
Approaching a High-Performance, General-Purpose Multi-Threaded Sampling
Methodology

Alen Sabu1, Harish Patil2, Wim Heirman2, Alexander Isaev2, and Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

1. Introduction

Computer architects rely heavily on microarchitectural simu-
lation for processor state exploration and evaluation. Simula-
tions allow the estimation of future system performance and
efficiency using the present hardware. However, traditional
cycle-accurate microarchitecture simulation is extremely slow,
especially when evaluating workloads with many threads. An
OpenMP application from the SPEC CPU 2017 benchmark
suite with reference inputs takes weeks or months to simulate
even on fast simulators like ZSim [1], Sniper [2], etc. As the
complexity of the target system increases, the simulations take
even longer when compared to native execution. One solution
to this issue is to sample the whole application to estimate the
performance. Since the application behavior exhibits repetitive
behavior, sampling can effectively reduce the size of the appli-
cation to a small fraction of its original, and the performance
of the entire application can be extrapolated because of this
repetitive behavior. The performance of the whole application
can be extrapolated, considering the performance of only a few
samples. SimPoint [3] uses the information about dynamic
basic-block distribution to find phases in an application and
select representative samples. SMARTS [4] is another such
methodology that has alternate fast-forward intervals between
the detailed simulation of sampling units.

Single-threaded sampling is now considered a solved prob-
lem. There are some solutions proposed for multithreaded
sampling. Time-based sampling [5] [6] is a generic technique
that considers time as the sampling unit. The major draw-
back of this technique is that the entire application needs to be
evaluated, either in detail or in fast-forward / warmup mode,
and therefore the speedup is limited by the number of instruc-
tions in the whole application. There have been a number of
application-specific multithreaded sampling methodologies
(like BarrierPoint [7] and TaskPoint [8]) that move beyond
some of the limitations of time-based sampling, speeding
up simulation by considering the number of representatives
(O(rep)), not the number of instructions (O(insn)), improving
performance significantly.

The goal of our proposal is to speed up the generic multi-
threaded sampling by selecting the representative simulation
regions from the whole application. Therefore, the perfor-
mance of the whole application can be extrapolated from the
performance of these representative samples.

2. Related Work
Table 1 shows the relevant prior work related to sampling
methodologies. We can infer from the table that none of
the previously proposed sampled simulation methodologies
address the generic multi-threaded sampling problem that is
independent of the length of the application.

3. Motivation and Scope
Sampling is a widely used technique to speed up simulation.
The overall performance of an application can be extrapolated
from the small number of instructions that are simulated in
detail. Simpoint, SMARTS, and many other sampling method-
ologies are proposed for single-threaded applications, while
multithreaded sampling remained an open problem until time-
based sampling was proposed that uses time as the sampling
unit. Time-based sampling simulation methodologies are slow
as they need to simulate the whole application.

Sampling generic (synchronizing) multithreaded applica-
tions is tricky as instructions-per-cycle (IPC) is not a valid met-
ric for such applications [14]. The forward progress of each
thread is dependent on other threads as well due to the pres-
ence of synchronization primitives. The underlying hardware
complexities contribute to the imbalance in thread progress.
Hence, a generic multithreaded sampling methodology is es-
sential to evaluate future hardware efficiently and would drive
the computer architect to arrive at a design decision in no time.

4. Synchronization Agnostic Multithreaded Sam-
pling

We consider a multithreaded application to be homogeneous if
the workload of all the threads is balanced. We also take into
account the underlying hardware that affects the execution
behavior of an application. Hardware heterogeneity can be
due to the presence of non-uniform memory access (NUMA)
nodes, simultaneous multithreading (SMT), heterogeneous
cores, etc. Figure 1 shows the overall workflow of the pro-
posed methodology. The proposed methodology supports
sampling homogeneous applications and statically scheduled
heterogeneous applications running on homogeneous or het-
erogeneous hardware.

On homogeneous hardware, the application threads are as-
sumed to progress equally, whereas on heterogeneous hard-
ware, the threads progress differently. In order to build the
correct thread ordering on heterogeneous hardware, we record



Type Sampling
methodology

Speed Simulation
time

Profiling
required

Warmup Comments

Single-threaded Simpoint [3] +++ O(rep) Yes Yes
Single-threaded SMARTS [4] + O(insn) No Yes
Single-threaded LiveSim [9] ++ O(rep) Yes No Selects early representatives
Single-threaded CoolSim [10] ++ O(insn) No No Cache model
Single-threaded Delorean [11] +++ O(insn) No No Cache model
Multithreaded TurboSMARTS [12] + O(insn) No Yes Non-synchronizing threads
Multithreaded Time-based [5] [6] + O(insn) Yes No
Multithreaded BarrierPoints [7] +++ O(rep) Yes Yes Requires barriers
Multithreaded TaskPoint [13] +++ O(rep) Yes Yes Requires tasks
Multithreaded Proposed work ++ O(insn) Yes No Requires static scheduled tasks

Table 1: Table shows various single-threaded and multithreaded application sampling techniques in-place. The field ‘speed’ is the
amount of speedup that can be achieved using the corresponding sampling methodology when compared to the whole application
simulation. The sampled simulation time depends on O(rep) or on O(insn).

Dynamic 
Scheduling

Application
Task Based Task-based 

Sampling

Homogeneous
Hardware

Barrier-based 
Slicing

Intra-barrier 
Regions

Time-based 
Sampling

Region Slicing

Region Clustering

Early 
Representative 

Regions

Yes

Yes Yes

No

No

No

Detailed 
Simulation by 
Application 

Reconstruction
Simulation 

Results
Application 

Performance

One-IPC 
Capture

Representative 
Regions

Parallel Simulation

Homogeneous
Application

Yes

Dynamic Scheduling

Static Scheduling

No

Figure 1: The overall flow of the proposed methodology.

the application execution using a one-IPC capture (all threads
progress at the rate of one instruction per cycle) so that any
effects of hardware heterogeneity on the application execu-
tion can be filtered out. The recorded execution path of the
application is chopped into intra-barrier regions using a barrier-
based sampling methodology like BarrierPoint [7]. Barriers
are synchronization points in an application where no thread
can make forward progress until all threads reach that point.

We split each intra-barrier region into slices of length 100
million instructions per thread. A global basic-block vector
(BBV) is emitted when the instruction count reaches 100 mil-
lion for at least one thread. The global BBV contains the
basic-block information of all the threads.

The BBV emission is modified slightly in the presence of
spinloops in the application. By providing an instruction target,
a region can be chosen by looking for the next loop entry once
the instruction target is achieved. The start and end of each
region are described as an ordered-pair (PC, count), where ‘PC’
is the address of the corresponding region boundary marker
and ‘count’ is the execution count of the marker at the start/end
of the region. The value of count for a particular region size is
invariant across multiple executions, which represents the unit
of work done. This hence would remain as valid simulation
points even in the presence of spin-loops.

The global BBVs generated from all such regions resulting
from intra-barrier regions are clustered. The clustering phase
is similar to Simpoint, except that we propose to use a hybrid
clustering algorithm. We first use the k-means algorithm [15]
to cluster the global BBVs and then use DBSCAN [16], keep-
ing minimum samples per cluster to be one on each output
cluster of the k-means algorithm. This aids in identifying
heterogeneous regions in an application, and the resulting
number of clusters represents the different phases that exist in
the application.

For a homogeneous application, the region that lies the clos-
est to the geometric centroid of the cluster (we use k-means
to form clusters that have a centroid) is chosen as the repre-
sentative of the cluster. The chosen representative samples are
called simulation points. All representatives are simulated in
parallel with ample warmup so that the microarchitectural state
remains intact when the regions start simulating. In the case
of a heterogeneous application, for each cluster, the earliest
occurring region in the application is chosen to be the repre-
sentative of that cluster. Similar to LiveSim, the simulation
starts off with the first simulation point, and as the simulation
moves further, the gaps are filled with similar regions executed
previously and with previously recorded memory checkpoints.

5. Evaluation Methodology

We aim to modify Sniper multicore simulation infrastruc-
ture [2] to implement the proposed simulation methodology.
We like to use the speed version of OpenMP applications in
SPEC CPU 2017 benchmark suite [17] with eight threads.
We plan to leverage Intel’s Pin [18] and Pinplay [19] tools
to generate reproducible, constrained, multi-threaded execu-
tion snapshots, called Pinballs [20], to allow for repeatable
analysis. We will record the execution path of all applications
as Pinballs. We will develop Pinplay-based tools to slice the
whole application generating BBVs (of desired slice-size) and
other vectors based on which the regions are clustered.

2



6. Conclusion
Sampling has been an effective technique employed by com-
puter architects to reduce the simulation time from weeks or
months to days or hours. We propose a generic multithreaded
sampling methodology for applications running on heteroge-
neous hardware. The work aims to reduce the simulation time
of generic multithreaded applications by orders of magnitude,
which was not possible with prior methodologies. The essence
of the proposed methodology lies in making full use of the
phase behavior of the application.

References
[1] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate mi-

croarchitectural simulation of thousand-core systems. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, page 475–486, New York, NY, USA, 2013. Association for
Computing Machinery.

[2] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation. In SC ’11: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–12, Nov 2011.

[3] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Proceed-
ings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS X,
page 45–57, New York, NY, USA, 2002. Association for Computing
Machinery.

[4] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. Smarts: Accelerating microarchitecture simulation via rigorous
statistical sampling. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, ISCA ’03, pages 84–97, New
York, NY, USA, 2003. ACM.

[5] T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of
multi-threaded applications. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
2–12, April 2013.

[6] E. K. Ardestani and J. Renau. Esesc: A fast multicore simulator using
time-based sampling. In 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), pages 448–459,
Feb 2013.

[7] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. Barri-
erpoint: Sampled simulation of multi-threaded applications. In 2014
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 2–12, March 2014.

[8] T. Grass, T. E. Carlson, A. Rico, G. Ceballos, E. Ayguadé, M. Casas,
and M. Moreto. Sampled simulation of task-based programs. IEEE
Transactions on Computers, 68(2):255–269, Feb 2019.

[9] S. Hassani, G. Southern, and J. Renau. Livesim: Going live with
microarchitecture simulation. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 606–617,
March 2016.

[10] N. Nikoleris, A. Sandberg, E. Hagersten, and T. E. Carlson. Cool-
sim: Statistical techniques to replace cache warming with efficient,
virtualized profiling. In 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS),
pages 106–115, July 2016.

[11] Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E. Carl-
son. Directed statistical warming through time traveling. In Pro-
ceedings of the 52Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’52, pages 1037–1049, New York, NY,
USA, 2019. ACM.

[12] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and James C.
Hoe. TurboSMARTS: Accurate microarchitecture simulation sampling
in minutes. In Proceedings of the 2005 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’05, pages 408–409, New York, NY, USA, 2005. ACM.

[13] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé. Taskpoint:
Sampled simulation of task-based programs. In 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 296–306, April 2016.

[14] A. R. Alameldeen and D. A. Wood. Ipc considered harmful for multi-
processor workloads. IEEE Micro, 26(4):8–17, July 2006.

[15] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, March 1982.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters a density-based algo-
rithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231. AAAI Press,
1996.

[17] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’18, pages 41–42, New York, NY, USA, 2018. ACM.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[19] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and
James Cownie. Pinplay: A framework for deterministic replay and
reproducible analysis of parallel programs. In Proceedings of the
8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’10, pages 2–11, New York, NY, USA, 2010.
ACM.

[20] Harish Patil and Trevor Carlson. Pinballs: portable and shareable
user-level checkpoints for reproducible analysis and simulation. In RE-
PRODUCE : Proceedings of the Workshop on Reproducible Research
Methodologies, Abstracts, page 2, 2014.

3


	Introduction
	Related Work
	Motivation and Scope
	Synchronization Agnostic Multithreaded Sampling
	Evaluation Methodology
	Conclusion

