
Alen Sabu, Harish Patil, Wim Heirman, Changxi Liu, Trevor E. Carlson

XPU-Point: Simulator-Agnostic Sample Selection

Methodology for Heterogeneous CPU-GPU Applications

November 06, 2025

Parallel Architectures and Compilation Techniques (PACT)

Complex Architectures ➔ Unrealistic Simulation Times

1

Estimated Simulation Times:
gem5 (CPU portion) and
AccelSim (GPU portion)
heterogeneous CPU-GPU

benchmarks SPEChpc 2021
and PyTorch/inference

Modern architectures require smarter simulation techniques

Simulation: Key Questions

2

Where to Simulate? How to Simulate?

Are Simulation Regions
Representative?

• Trace-driven/Checkpoint-driven

• System-level/User-level

Unit of Work/Simulation

• Repeatable across runs

• Microarchitecture-independent

Compute Sampling Error

• Using simulation

• Using native execution (simulator-agnostic)

T Sherwood et al., “Automatically characterizing large scale program behavior,” ASPLOS 2002.

Selection of Regions of Interest

3

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

Program ExecutionSplit

Where to Simulate?

BBV Generation using Pin

Selection of Regions of Interest

4

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

BBV1 BBV2 BBV4

Program ExecutionSplit

Where to Simulate?

Selection of Regions of Interest

5

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

Split

BBV1 BBV2 BBV4 BBV3 BBV6 BBV9 BBV12

Program Execution

Where to Simulate?

Selection of Regions of Interest

6

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Execution

Program Trace

BBV1 BBV2 BBV4 BBV5BBV3 BBV6 BBV9 BBV12 BBV7 BBV8 BBV10 BBV11

Split

Where to Simulate?

25% 33.3% 41.7%

J Lau et al., “The Strong Correlation Between Code Signatures and Performance,” ISPASS 2005

Selection of Regions of Interest

7

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

BBV1

BBV2 BBV4 BBV5BBV3 BBV6

BBV9

BBV12

BBV7

BBV8 BBV10 BBV11

SimPoint Sampling

Program Trace

Program ExecutionSplit

Where to Simulate?

25% 33.3% 41.7%

J Lau et al., “The Strong Correlation Between Code Signatures and Performance,” ISPASS 2005

Projection Methodology

8

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

BBV1

BBV2 BBV4 BBV5BBV3 BBV6

BBV9

BBV12

BBV7

BBV8 BBV10 BBV11

Instead of all regions…

25% 33.3% 41.7%

…simulate only selected regions

Project performance using weights

𝐒𝐩𝐞𝐞𝐝𝐮𝐩 = Τ12 3 = 𝟒

Simulation Region Validation

9

Are Simulation Regions
Representative?

With Simulation

Workload Regions

Simulate

Compute Performance Stats &

Sampling Error

Challenge:

• Whole-program simulation is very slow

Workarounds:

• Use short workloads

• Use a fast, less accurate simulator

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫

= 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟

Simulation Region Validation

10

Are Simulation Regions
Representative?

With Native Execution

Workload Regions

Run natively: Gather

TSC/performance counters

Compute Performance Stats &

Sampling Error

Simulator-agnostic:

• Using native system as the simulator

• Much faster

Challenge:

• Precisely gathering region performance

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫

= 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟

Methodology Scope
Regions (Unit of

Work/Simulation)
Sample Validation

Technique
Comment

PinPoints (MICRO 2004)
Single-threaded/

Itanium
Fixed instructions

[simulator-agnostic]
Pin (JIT) + perfmon

Fixed-length
intervals only

Cross-binary Simulation
Points (ISPASS 2007, 2015)

Single-threaded,
multiple

binaries/x86

Fixed instructions
(binary 1)

CMP$IM: Fast Pin-
based cache simulator

Less detailed
simulator used

GT-PinPoints (IISWC 2015)
OpenCL: GPU-

only/Intel GPUs
GPU kernels

[simulator-agnostic]
CoFluent

GPU-only

LoopPoint (HPCA 2022)
Multi-

threaded/x86
Loop iterations

Sniper: Pin/SDE-based
simulator

SPEC ‘train’ runs
used

XPU-Point (PACT 2025)
Heterogeneous

CPU-GPU
GPU kernel: end

to end

[simulator-agnostic]
 Pin (probe) +

GT-Pin & NVBit

Co-analysis of CPU
and GPU

Simulation Region Selection at Intel: Past 20 years

11

• Multi-cores aren’t scaling well1 – power and thermal constraints

• XPU: Heterogeneous system w/ CPU, GPU, and memory co-packaged

1H. Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling.” ISCA 2011.

Why Heterogeneous Architectures?

12

Source: Intel

N. Binkert et al., "The gem5 simulator," SIGARCH Computer Architecture News, 2011

C. Liu et al., "Photon: A fine-grained sampled simulation methodology for gpu workloads," MICRO, 2023

Simulation of Heterogeneous Architectures

13

Simulation Slowdowns

CPU simulation >10,000× slowdown1

GPU simulation >1,000,000,000× slowdown2

Heterogeneous CPU-GPU simulation is extremely challenging

• Modern CPU-GPU workloads are co-operative (Ex. GROMACS)

• Need CPU and GPU co-analysis for combined phase detection

Phase-based CPU-GPU Region Selection

14

Challenge: No framework for simultaneous CPU and GPU analysis

Image Source: Intel

XPU-Pin: Framework for Co-Analysis of

Heterogeneous Execution

15

XPU-Pin

Pin tool (x86 CPU)

GTPin tool

(Intel GPU)

NVBit tool

(NVIDIA GPU)

x-Instrument tool

(x-Accelerator)
…

Event callbacks

XPU Analysis Tool

XPU-Pin

A generic co-

instrumentation

framework

Support for generic accelerators: Need instrumentation tool as shared library

XPU-Point: End-to-End Workflow

16

Heterogeneous

Workload

XPU-Profiler

XPU-Pin

Full

Performance

Extrapolated

PerformanceSampling Error

XPU-Timer

XPU-Pin

XPU-Timer

XPU-Pin

WeightsXPU

Regions

Sample Validation

Sample Selection

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫 = 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟

Unit of Work for XPU-Point

17

CPU GPUHeterogeneous

Workload

C
P

U
 H

o
st

C
o
d
e

G
P

U
 D

e
v
ic

e

C
o
d
e

…
…

Slice/Region

Region boundary

(kernel name, count)

Repeatable regions

over multiple runs

XPU-Profiler: CPU-GPU BBV Generation

18

XPU-BBV

CPU-GPU

Workload

XPU-ProfilerShared Libs

XPU-Pin

CPU

BBVs

GPU

BBVs

BBVs per-warp

BBVs per-thread

Concatenate

Challenge: Overhead of profiling → Be selective (shared libraries)

XPU-BBVs : CPU-GPU BBV Concatenation

19

BBVt0 BBVt1 BBVtN… BBVw0 BBVwKBBVw1 …

XPU-BBV

CPU BBV GPU BBV

Concatenate

(kernel namei, counti) (kernel namei, counti)

(kernel namei, counti)

(kernel namei-1, counti-1)

(kernel namei-1, counti-1) (kernel namei-1, counti-1)

XPU-Timer: Time Stamps for CPU-GPU Regions

20

CPU-GPU

Workload

XPU-TimerShared Libs

XPU-Pin

Full

Performance

Region

Performance

RDTSC1

RDTSC2

RDTSCn

RDTSCi

…
…

RDTSC3

RDTSCi+1

RDTSCn-1

• CPUs

▪ Multiple Intel Client/Server CPUs

• GPUs

▪ Intel: Iris Xe (Integrated), Discrete Graphics 2 (DG2), Ponte Vecchio (PVC)

▪ NVIDIA: A100, GeForce GTX 1080, Titan XP

• Compilers

▪ Intel OneAPI, GNU, NVCC

Experimental Setup

21

1. Sampling Error

2. Speedup

• Base analysis

▪ BBV generation and error measurement on the same machine

• Cross analysis

▪ Profiling (Machine1 /GPU1) → Measurement (Machine2 / GPU2)

Results Reported

22

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫 = 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟

𝐒𝐩𝐞𝐞𝐝𝐮𝐩 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐓𝐨𝐭𝐚𝐥 𝐑𝐞𝐠𝐢𝐨𝐧𝐬

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐒𝐢𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐑𝐞𝐠𝐢𝐨𝐧𝐬

Results: SPECaccel2023

23

XPU slices:
• Combined CPU-GPU phase

detection

Results: SPECaccel2023

24

Focusing on GPU-only evaluation could lead to inaccurate decisions

XPU slices:
• Combined CPU-GPU phase

detection
GPU slices:
• GPU-only phase detection

Results: SPEChpc2021

25

Results: SPEChpc2021

26

GROMACS: Various Configurations

27

The classification of GROMACS based on the offloading device for the execution

of each calculation. We also use -nsteps 200 with -notunepme for all types.

Type nb pme pmefft bonded update #slices

A GPU CPU CPU CPU CPU 305

B GPU CPU CPU GPU CPU 506

C GPU GPU CPU CPU CPU 707

D GPU GPU CPU GPU CPU 908

E GPU GPU GPU CPU CPU 3730

F GPU GPU GPU GPU CPU 3931

Results: GROMACS

28

Results: GROMACS

29

PyTorch Inference Workloads: Overheads

30

PyTorch Inference

runs evaluated on

platform with Intel

Sapphire Rapids

CPU and Intel

Ponte Vecchio GPU

Challenge: Overhead of profiling → Be selective (shared libraries)

Results: PyTorch Inference

31

PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU

average

Results: PyTorch Inference

32

PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU

• XPU-Point is the first to enable accelerated heterogeneous simulation
through CPU-GPU co-sampling

• Works for both Intel- and NVIDIA-based CPU-GPU platforms

• XPU-Point tools are open-sourced on GitHub

▪ https://github.com/nus-comparch/xpupoint

• Acknowledgments

▪ Roland Schulz, Edward Mascarenhas, Aleksandr Bobyr, Intel GTPin Team

Summary

33

https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint

	Slide 0
	Slide 1: Complex Architectures  Unrealistic Simulation Times
	Slide 2: Simulation: Key Questions
	Slide 3: Selection of Regions of Interest
	Slide 4: Selection of Regions of Interest
	Slide 5: Selection of Regions of Interest
	Slide 6: Selection of Regions of Interest
	Slide 7: Selection of Regions of Interest
	Slide 8: Projection Methodology
	Slide 9: Simulation Region Validation
	Slide 10: Simulation Region Validation
	Slide 11: Simulation Region Selection at Intel: Past 20 years
	Slide 12: Why Heterogeneous Architectures?
	Slide 13: Simulation of Heterogeneous Architectures
	Slide 14: Phase-based CPU-GPU Region Selection
	Slide 15: XPU-Pin: Framework for Co-Analysis of Heterogeneous Execution
	Slide 16: XPU-Point: End-to-End Workflow
	Slide 17: Unit of Work for XPU-Point
	Slide 18: XPU-Profiler: CPU-GPU BBV Generation
	Slide 19: XPU-BBVs : CPU-GPU BBV Concatenation
	Slide 20: XPU-Timer: Time Stamps for CPU-GPU Regions
	Slide 21: Experimental Setup
	Slide 22: Results Reported
	Slide 23: Results: SPECaccel2023
	Slide 24: Results: SPECaccel2023
	Slide 25: Results: SPEChpc2021
	Slide 26: Results: SPEChpc2021
	Slide 27: GROMACS: Various Configurations
	Slide 28: Results: GROMACS
	Slide 29: Results: GROMACS
	Slide 30: PyTorch Inference Workloads: Overheads
	Slide 31: Results: PyTorch Inference
	Slide 32: Results: PyTorch Inference
	Slide 33: Summary

