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Complex Architectures ➔ Unrealistic Simulation Times
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Estimated Simulation Times: 
gem5 (CPU portion) and 
AccelSim (GPU portion)
heterogeneous CPU-GPU 

benchmarks SPEChpc 2021 
and PyTorch/inference 

Modern architectures require smarter simulation techniques



Simulation: Key Questions
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Where to Simulate? How to Simulate?

Are Simulation Regions 
Representative?

• Trace-driven/Checkpoint-driven

• System-level/User-level

Unit of Work/Simulation

• Repeatable across runs

• Microarchitecture-independent

Compute Sampling Error

• Using simulation

• Using native execution (simulator-agnostic)



T Sherwood et al., “Automatically characterizing large scale program behavior,” ASPLOS 2002.

Selection of Regions of Interest

3

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

Program ExecutionSplit

Where to Simulate?

BBV Generation using Pin



Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

BBV1 BBV2 BBV4

Program ExecutionSplit

Where to Simulate?



Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Trace

Split

BBV1 BBV2 BBV4 BBV3 BBV6 BBV9 BBV12

Program Execution

Where to Simulate?



Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint Sampling

Program Execution

Program Trace

BBV1 BBV2 BBV4 BBV5BBV3 BBV6 BBV9 BBV12 BBV7 BBV8 BBV10 BBV11

Split

Where to Simulate?

25% 33.3% 41.7%



J Lau et al., “The Strong Correlation Between Code Signatures and Performance,” ISPASS 2005

Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

BBV1

BBV2 BBV4 BBV5BBV3 BBV6

BBV9

BBV12

BBV7

BBV8 BBV10 BBV11

SimPoint Sampling

Program Trace

Program ExecutionSplit

Where to Simulate?

25% 33.3% 41.7%



J Lau et al., “The Strong Correlation Between Code Signatures and Performance,” ISPASS 2005

Projection Methodology
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

BBV1

BBV2 BBV4 BBV5BBV3 BBV6

BBV9

BBV12

BBV7

BBV8 BBV10 BBV11

Instead of all regions… 

25% 33.3% 41.7%

…simulate only selected regions

Project performance using weights

𝐒𝐩𝐞𝐞𝐝𝐮𝐩 = Τ12 3 = 𝟒



Simulation Region Validation
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Are Simulation Regions 
Representative?

With Simulation

Workload Regions

Simulate

Compute Performance Stats & 

Sampling Error

Challenge: 

• Whole-program simulation is very slow

Workarounds: 

• Use short workloads

• Use a fast, less accurate simulator

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫

= 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟



Simulation Region Validation
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Are Simulation Regions 
Representative?

With Native Execution

Workload Regions

Run natively: Gather 

TSC/performance counters

Compute Performance Stats & 

Sampling Error

Simulator-agnostic: 

• Using native system as the simulator

• Much faster

Challenge: 

• Precisely gathering region performance

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫

= 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟



Methodology Scope
Regions (Unit of 

Work/Simulation)
Sample Validation 

Technique
Comment

PinPoints (MICRO 2004)
Single-threaded/ 

Itanium
Fixed instructions

[simulator-agnostic] 
Pin (JIT) + perfmon

Fixed-length 
intervals only

Cross-binary Simulation 
Points (ISPASS 2007, 2015)

Single-threaded, 
multiple 

binaries/x86

Fixed instructions 
(binary 1)

CMP$IM: Fast Pin-
based cache simulator

Less detailed 
simulator used 

GT-PinPoints (IISWC 2015)
OpenCL: GPU-

only/Intel GPUs
GPU kernels

[simulator-agnostic] 
CoFluent

GPU-only 

LoopPoint (HPCA 2022)
Multi-

threaded/x86
Loop iterations

Sniper: Pin/SDE-based 
simulator

SPEC ‘train’ runs  
used

XPU-Point (PACT 2025)
Heterogeneous 

CPU-GPU
GPU kernel: end 

to end

[simulator-agnostic]
 Pin (probe) + 

GT-Pin & NVBit

Co-analysis of CPU 
and GPU

Simulation Region Selection at Intel: Past 20 years
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• Multi-cores aren’t scaling well1 – power and thermal constraints

• XPU: Heterogeneous system w/ CPU, GPU, and memory co-packaged

1H. Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling.” ISCA 2011.

Why Heterogeneous Architectures?
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Source: Intel



N. Binkert et al., "The gem5 simulator," SIGARCH Computer Architecture News,  2011

C. Liu et al., "Photon: A fine-grained sampled simulation methodology for gpu workloads," MICRO, 2023

Simulation of Heterogeneous Architectures
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Simulation Slowdowns

CPU simulation >10,000× slowdown1 

GPU simulation >1,000,000,000× slowdown2

Heterogeneous CPU-GPU simulation is extremely challenging



• Modern CPU-GPU workloads are co-operative (Ex. GROMACS)

• Need CPU and GPU co-analysis for combined phase detection

Phase-based CPU-GPU Region Selection
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Challenge: No framework for simultaneous CPU and GPU analysis

Image Source: Intel



XPU-Pin: Framework for Co-Analysis of  

Heterogeneous Execution
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XPU-Pin

Pin tool (x86 CPU)

GTPin tool 

(Intel GPU)

NVBit tool 

(NVIDIA GPU)

x-Instrument tool 

(x-Accelerator) 
…

Event callbacks

XPU Analysis Tool

XPU-Pin

A generic co-

instrumentation 

framework

Support for generic accelerators: Need instrumentation tool as shared library



XPU-Point: End-to-End Workflow
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Heterogeneous 

Workload

XPU-Profiler

XPU-Pin

Full 

Performance

Extrapolated 

PerformanceSampling Error

XPU-Timer

XPU-Pin

XPU-Timer

XPU-Pin

WeightsXPU 

Regions

Sample Validation

Sample Selection

𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫 = 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟



Unit of  Work for XPU-Point
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Region boundary

(kernel name, count)

Repeatable regions 

over multiple runs



XPU-Profiler: CPU-GPU BBV Generation
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XPU-BBV

CPU-GPU 

Workload

XPU-ProfilerShared Libs

XPU-Pin

CPU 

BBVs

GPU 

BBVs

BBVs per-warp

BBVs per-thread

Concatenate

Challenge: Overhead of profiling → Be selective (shared libraries)



XPU-BBVs : CPU-GPU BBV Concatenation
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BBVt0 BBVt1 BBVtN… BBVw0 BBVwKBBVw1 …

XPU-BBV

CPU BBV GPU BBV

Concatenate

(kernel namei, counti) (kernel namei, counti)

(kernel namei, counti)

(kernel namei-1, counti-1)

(kernel namei-1, counti-1) (kernel namei-1, counti-1)



XPU-Timer: Time Stamps for CPU-GPU Regions
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CPU-GPU 

Workload

XPU-TimerShared Libs

XPU-Pin

Full 

Performance

Region 

Performance

RDTSC1

RDTSC2

RDTSCn

RDTSCi

…
…

RDTSC3

RDTSCi+1

RDTSCn-1



• CPUs

▪ Multiple Intel Client/Server CPUs 

• GPUs

▪ Intel: Iris Xe (Integrated), Discrete Graphics 2 (DG2), Ponte Vecchio (PVC)

▪ NVIDIA: A100, GeForce GTX 1080, Titan XP

• Compilers

▪ Intel OneAPI, GNU, NVCC

Experimental Setup
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1. Sampling Error

2. Speedup

• Base analysis

▪ BBV generation and error measurement on the same machine

• Cross analysis

▪ Profiling (Machine1 /GPU1) → Measurement (Machine2 / GPU2)

Results Reported
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𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠 𝐄𝐫𝐫𝐨𝐫 = 𝟏 −
𝐄𝐱𝐭𝐫𝐚𝐩𝐨𝐥𝐚𝐭𝐞𝐝 𝐏𝐞𝐫𝐟

𝐀𝐜𝐭𝐮𝐚𝐥 𝐏𝐞𝐫𝐟

𝐒𝐩𝐞𝐞𝐝𝐮𝐩 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐓𝐨𝐭𝐚𝐥 𝐑𝐞𝐠𝐢𝐨𝐧𝐬

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐒𝐢𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐑𝐞𝐠𝐢𝐨𝐧𝐬



Results: SPECaccel2023
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XPU slices:
• Combined CPU-GPU phase 

detection



Results: SPECaccel2023
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Focusing on GPU-only evaluation could lead to inaccurate decisions

XPU slices:
• Combined CPU-GPU phase 

detection
GPU slices: 
• GPU-only phase detection 



Results: SPEChpc2021

25



Results: SPEChpc2021
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GROMACS: Various Configurations
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The classification of GROMACS based on the offloading device for the execution 

of each calculation. We also use -nsteps 200 with -notunepme for all types.

Type nb pme pmefft bonded update #slices

A GPU CPU CPU CPU CPU 305

B GPU CPU CPU GPU CPU 506

C GPU GPU CPU CPU CPU 707

D GPU GPU CPU GPU CPU 908

E GPU GPU GPU CPU CPU 3730

F GPU GPU GPU GPU CPU 3931



Results: GROMACS
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Results: GROMACS
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PyTorch Inference Workloads: Overheads
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PyTorch Inference 

runs evaluated on 

platform with Intel 

Sapphire Rapids 

CPU and Intel 

Ponte Vecchio GPU

Challenge: Overhead of profiling → Be selective (shared libraries)



Results: PyTorch Inference
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PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU

average



Results: PyTorch Inference
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PyTorch Inference (selective profiling) runs evaluated on Intel Ponte Vecchio GPU



• XPU-Point is the first to enable accelerated heterogeneous simulation 
through CPU-GPU co-sampling

• Works for both Intel- and NVIDIA-based CPU-GPU platforms

• XPU-Point tools are open-sourced on GitHub

▪ https://github.com/nus-comparch/xpupoint

• Acknowledgments

▪ Roland Schulz, Edward Mascarenhas, Aleksandr Bobyr, Intel GTPin Team

Summary

33

https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
https://github.com/nus-comparch/xpupoint
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