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ABSTRACT Pre-silicon performance evaluation is a crucial component of computer systems research
and development. While simulation has long been the de facto standard in this context, it can be
prohibitively time-consuming for long-running, realistic workloads. To expedite this process, researchers
have traditionally turned to sampling techniques. However, these techniques typically rely on fixed-length
intervals for analysis, which can often be out of sync with the periodicity of program execution. Additionally,
since an application’s phase behavior is strongly correlated to the code it executes, it can exhibit a hierarchy of
phase behaviors that can be observed at various interval lengths, rendering conventional sampling techniques
inadequate. To address these limitations, we propose Viper – a novel sampled simulation methodology that
applies to single-threaded and multi-threaded workloads by leveraging the hierarchical structure of program
execution. Viper takes into account both application periodicity and inter-thread synchronization in order to
achieve better sampling accuracy and smaller regions, which enables faster register-transfer level (RTL) sim-
ulations. We evaluate Viper with the multi-threaded SPEC CPU2017 benchmarks and demonstrate a signifi-
cant simulation speedup (up to 2,710×, 358× on average for the train input set) while maintaining an average
sampling error of just 1.32%. The source code of Viper is available at https://github.com/nus-comparch/viper.

INDEX TERMS Multi-core simulation, performance estimation, RTL evaluation, workload sampling.

I. INTRODUCTION
As we approach the limits of technology scaling, there is a
growing emphasis on efficient and high-performance proces-
sor designs. Exploring and evaluating the design space of
these next-generation architectures is an essential part of this
research. However, the traditional dependence on extremely
time-consuming microarchitectural simulations for large,
realistic workloads proves impractical in addressing this
challenge. For multithreaded workloads, this issue is further
exacerbated by the complex interactions between multiple
threads and the synchronization techniques employed to
achieve scalable performance. One solution to address this
issue is sampled simulation, which selects a representative
subset of regions to simulate in detail and interpolates the
performance of the entire application based on this. Prior
works [1], [2], [3], [4], [5], [6] have demonstrated that, due
to the repetitive behavior of workloads, sampling can often
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reduce the simulation time by orders of magnitude while
preserving the original program characteristics.

SimPoint [1] reduces the simulation time by leveraging the
application’s phase behavior for single-threaded workloads.
It does so by splitting the application into fixed-size regions,
clustering them based on their execution behavior, and then
simulating a representative element from each cluster in
detail to extrapolate the performance of the entire application.
However, a major drawback of this method is that it uses
fixed-size regions for analysis, which do not often align with
the actual periodicity [7] of program execution. Simpoint
3.0 [8] introduces variable length regions but does not address
application periodicity. Moreover, since an application’s
phase behavior [9], [10] is strongly correlated to the code it
executes, it can exhibit a hierarchy of phase behaviors that can
be observed at different interval lengths [11]. Consequently,
a single fixed region size cannot effectively capture the full
spectrum of phase behaviors and often leads to suboptimal
phase classification [12].
Later works, such as BarrierPoint [4], TaskPoint [13],

and LoopPoint [6], address this shortcoming by utilizing
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the program structures and constructs within the application
code to split the application into a series of independently
analyzable regions to build a representative sample. Unfor-
tunately, however, both BarrierPoint and TaskPoint only
apply to specific classes of applications. BarrierPoint targets
applications that use global barriers for synchronization,
whereas TaskPoint targets task-based applications. While
LoopPoint applies to generic multi-threaded applications,
the regions it selects do not necessarily align with the
application’s phase behavior. Moreover, all these techniques
use large region sizes (≈100 million instructions or more
per thread), suitable for microarchitecture-level simulations
(which take a few hours) but not for RTL-level simulations,
which may take weeks to months for completion. In addition,
no previous methodology provides a solution to detect small
regions needed for RTL-level simulation, as they would
typically result in aliasing [11], leading to unpredictable
results. In this work, we propose a solution to solve
both of these issues to achieve high performance and
accuracy.

The goal of this work is to address the generic sampling
problem by selecting representative regions that align with
the application phases for simulation. Utilizing the innate
program structures instead of fixed-length intervals allows for
flexible region sizes that are more likely to be aligned with
the application periodicity, thereby reducing the possibility
of aliasing [11]. To do this, we present a novel methodology,
Viper, that enables fast and efficient analysis prior to sampled
simulation. In short, we make the following contributions to
this work:

• We propose a novel methodology, Viper, that goes
beyond prior state-of-the-art sampled simulation tech-
niques to allow for fine-grained region selection and
accurate performance reconstruction.

• We present a methodology that meets the requirements
for RTL-level simulations for accurate performance
estimations. We show this by performing experiments
on microarchitecture-level and RTL-level simulators,
enabling the detailed evaluation of large benchmarks.

• We provide an extensive evaluation of Viper and
demonstrate best-in-class accuracy (average sampling
error of just 1.32%) and speedup of up to 2,710×, with
an average of 358× for the train input set of SPEC
CPU2017 benchmarks. We also explore the accuracy
and performance trade-offs of Viper in comparison with
prior works.

The rest of the paper is organized as follows. In Section II,
we discuss the relevant background and the challenges
involved in the simulation of multi-threaded applications.
Section III presents the Viper methodology in detail.
We then discuss the experimental infrastructure in Section IV,
followed by an extensive evaluation of Viper in Section V
showcasing the applicability of the proposed methodology.
Finally, we discuss prior work in Section VI and conclude
the paper in Section VII.

II. BACKGROUND AND MOTIVATION
In this section, we present the background to understand
the key features of sampled simulation. We also discuss the
challenges in simulating largeworkloads and how the existing
sampling methodologies are insufficient to address them.

A. CHARACTERIZING PROGRAM EXECUTION
A basic block is a sequence of instructions that has single
entry and exit points with no branches or jumps within the
sequence. A basic block vector (BBV) is a data structure
that represents a set of basic blocks, storing counts for
each executed basic block, and forms a fingerprint of a
region’s execution. It provides a compact representation of
the program’s control flow. Typically, BBVs are collected at
regular intervals during the program execution. Each of these
BBVs represents a region of an application that correlates to
region performance [14]. BBVs provide information about
how the program execution behavior changes over time.

LRU stack distance is the number of distinct cache accesses
between consecutive accesses of the same data item [15].
LRU stack distance vectors (LDVs) are data structures
that are used to keep track of the LRU stack distances.
LDVs consist of integers associated with each cache line,
representing the number of cache lines accessed between the
current cache line and its most recent access. Shen et al. [16]
showed that LDVs can be used to characterize program
behavior. While BBVs focus on analyzing control flow
patterns, LDVs provide insights into memory access patterns
and cache behavior. By combining BBVs and LDVs, a more
comprehensive understanding of program behavior can be
achieved [4].

B. PROGRAM SAMPLING
Sampling is the process of selecting a minimal subset or a
sample from a population to represent the entire population.
The attributes or characteristics of the population are esti-
mated using the selected sample.We employ this technique to
reduce the simulation time of large workloads by simulating
a representative sample from the entire program execution.
Prior works [1], [2] split an application into a series of exe-
cution slices and cluster these slices with similar execution
features into groups. These techniques demonstrate high per-
formance by simulating selected representative slices from
each group to represent the entire cluster of software slices.

Single-threaded sampling is largely considered to be
a solved problem, whereas multi-threaded sampling has
been a long-standing problem due to the complexity of
the workload behavior: threads that sleep, synchronize,
or are being delayed in spin-loops, among other issues.
Alameldeen et al. [17] demonstrated the limitations of
non-determinism with multi-threaded workloads and demon-
strated that IPC can be a poor performance indicator [18],
leading to inaccurate estimation of speedup or run time.

While initial works on multi-threaded sampling [19]
focused on handling applications with uncorrelated thread
behaviors, subsequent research [3], [11] considered time
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as the sampling unit which applies to synchronizing
multi-threaded workloads. However, a major drawback of
this approach is that the whole application needs to be
simulated sequentially (i.e., it cannot be parallelized), and
thus, the maximum attainable simulation speedup is limited
by the number of instructions in the whole application.
Techniques like BarrierPoint [4] and LoopPoint [6] consider
application barriers and loops, respectively, to define a unit-
of-work [18]. BarrierPoint works on inter-barrier regions that
can be so large that it is infeasible to simulate them, limiting
scalability. LoopPoint divides the application into similarly
sized regions enclosed within loop entries, ensuring size
limits. However, the regions may not align with application
phases. While LoopPoint regions are large enough to ensure
accuracy and prevent aliasing, they are often too long for
RTL-level simulation.

C. CHECKPOINTING TECHNIQUES
Checkpointing is a widely used technique to save the
state of a simulation at a particular point in time, which
can then be restored later, allowing for further simulation
or debugging. Checkpointing is often used to parallelize
simulation as well as to improve performance by reducing the
amount of time that needs to be spent re-simulating portions
of an application that have already been executed. For
example, Checkpoint/Restore In Userspace (CRIU) [20] is a
well-known checkpointing mechanism on Linux. CRIU has
been integratedwithmajor container engines like docker [21].
In addition, gem5 [22], [23] uses its own checkpointing for-
mat that is useful to create microarchitecture-level snapshots
of simulation that can be restored later. For x86 systems, the
PinPlay infrastructure [24] supports storing the application
state as architectural checkpoints, called Pinballs, which
can be replayed on PinPlay-enabled tools and simulators.
Recent works on executable checkpoints, like ELFies [25],
are promising in terms of usability and portability, as it
is supported on popular microarchitecture simulators like
gem5 [22] and Sniper [26].

D. MICROARCHITECTURAL STATE WARMUP
Modern processors employ various techniques to improve
performance, such as branch prediction, caching, and spec-
ulative execution. These techniques can have a significant
impact on the workload execution run time. While sim-
ulating the key parts of an application, it is important
to rebuild or warm up the microarchitectural state of
the system. This ensures that subsequent simulations or
performance measurements accurately reflect the behavior
of the processor. Methodologies like LoopPoint [6] rely
on simulating a large region right before the start of the
simulation region to warm up the microarchitectural state,
while SMARTS [2] or time-based sampling techniques [3],
[11] enable functional warming during the entire simulation.
TurboSMARTS [27] uses a microarchitecture-level check-
pointing mechanism to handle warmup that captures and
stores the functionally warmed system state before each

simulation region. Checkpoint-based warmup techniques
require a large amount of storage. Moreover, it may not
always be suitable for microarchitecture design-space explo-
ration that runs experiments altering the memory hierarchy
configuration, like cache sizes or the number of cache
levels, because it would invalidate the checkpoint for those
regions, requiring new memory checkpoints for each cache
configuration.

E. THE QUEST FOR ADVANCED AND EFFICIENT SAMPLING
With the widening gap between simulator performance
and the processors they model, running a cycle-accurate
full-system simulation of large designs can be extremely
time-consuming. Current sampling solutions are primarily
targeted for microarchitecture-level simulations. Some recent
works [28] attempted to adapt these solutions for RTL-level
simulations on Verilator [29] using smaller region sizes
aiming to improve simulation efficiency, which, however,
resulted in accuracy that is typically not acceptable. The result
is that it is currently infeasible to evaluate the performance
of large workloads on the RTL level. Recent works [30],
[31], [32] addressed the problem of accelerating RTL
simulation by leveraging techniques like batch processing,
task-level dataflow execution, low-level parallelism, and
selective execution. These orthogonal techniques to speed
up simulation may not scale well for very large workloads.
In addition, while FPGA simulation infrastructures, such
as Diablo [33] or FireSim [34], offer a faster alternative
for simulation, FPGAs are specialized devices with inherent
limitations in terms of memory capacity and logic capacity.
This means that it is often not possible to fit large, realistic
processor models on FPGAs. This highlights the need for
developing specialized workload sampling methodologies
that can be flexibly applied to both microarchitecture-level
and RTL-level simulations. These methodologies should
support finer region granularities that align with the dynamic
phase behavior exhibited by the application. By tailoring the
sampling approach to capture the specific characteristics and
phases of the workload, more accurate and efficient sampled
simulations can be performed.

III. THE VIPER METHODOLOGY
In this section, we describe the details of our proposed
sampled simulation methodology, Viper (shown in Figure 1).
Viper consists of four main steps: (i) Pre-profile Analysis
which marks the region boundaries at which we split
the application, (ii) Region Profiling, where the profiling
information in the form of feature vectors is collected for
each region, (iii) Clustering, which groups together regions
with similar execution behavior based on the profiling
information, and (iv) Simulation, where each application
region is simulated either in Detailed Mode or Fast-forward
Mode based on the clusters formed. The full application
performance is reconstructed from the performance of each
region. In the subsequent subsections, we provide details on
how each of these stages operates.
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FIGURE 1. The workflow of Viper showing region identification,
clustering, and simulation. The hierarchical structure of an application is
used to identify regions. Sampled simulation is performed based on the
clustering information of the regions. The simulation can be performed
on various kinds of simulators depending on the level of detail required.

A. EXPLORING THE HIERARCHICAL STRUCTURE OF
PROGRAM EXECUTION
Multi-threaded applications typically execute in a hierar-
chical flow, exhibiting different cyclic behavior patterns
at varying interval lengths. These repeating patterns,
often referred to as phases, are strongly correlated to
the code executed by the application [11], [14], [35].
Thus, by analyzing the inherent program structures in an
application’s code, one can effectively capture the variations
in its phase behavior. In Viper, we utilize this principle to
identify phase markers [35] – the points within a program
that correspond to change in the application’s phase behavior.
Phase markers can be used to split the application into a series
of independently analyzable regions.

There are several kinds of program constructs in a
parallel multi-threaded code region, such as barriers and
loops, which can serve as potential phase markers of the
application. Choosing barrier counts or loop counts over
instruction counts to represent work can accurately demarcate
multi-threaded regions over several runs.

• Barriers: Multi-threaded applications include single-
threaded and multi-threaded code regions, with thread
synchronization at boundaries using barriers that can be
detected by compiler-generated instructions or functions
to mark new code regions in machine code. In OpenMP-
enabled applications, the GCC compiler generates the
_omp_fn identifier that can be used to detect barriers.

• Loops: Typically, generic multi-threaded applications
consist of various levels of nested loops. In our
analysis, we use the application’s dynamic control-flow
graph (DCFG) [36] to identify the loops in the outermost
level of the code region as task loops and the remaining
as inner loops or ordinary loops. The DCFG is utilized
to identify loop headers, and for each loop, information
about their outer loops and associated subroutines is then
collected. This helps to determine whether a loop is the
outermost one in the current subroutine and if the current
subroutine is the outermost in the given multi-threaded
region.

After identifying potential phase markers in the applica-
tion, we prioritize them for use as region boundaries. Barriers
receive the highest priority due to their natural alignment
of threads. Prior studies [4] support this, highlighting that
partitioning at barrier boundaries prevents aliasing issues
and increases accuracy. Task loops within a code region
receive the next highest priority, marking boundaries between

parallel tasks. Lastly, inner loops or ordinary loops are
considered for finer granularity, albeit with lower priority,
as ordinary loops typically do not act as phase markers in
large applications. We then select a subset of these potential
markers as region boundaries, considering their priorities.
We also ensure that the resulting region sizes are suitable
for analysis, meeting both a minimum (δmin = 10,000,000)
instruction threshold to capture variations in phase behavior
and avoid aliasing issues [26] and a maximum (δmax =

100,000,000) threshold for efficient simulation in a reason-
able amount of time.

FIGURE 2. The selection of region boundaries (or markers) in an
application using Viper. Marker Mi signifies the beginning of the current
region with expected region lengths to be between δmin and δmax
instructions. Mi+1 is finally identified in accordance with case (a) or
(b) (described in section III-A), which marks the end of the current region.

1) REGION BOUNDARIES
Once the list of potential phase markers is identified, the
next step is to collect the highest-priority phase marker
from every T (T ≈ 1,000,000) instructions. From this
highest-priority list, we further select a subset of phase
markers to serve as the region boundaries, subject to the
constraints that the resulting region sizes approximately fall
within the range of [δmin, δmax] instructions as illustrated
in Figure 2. This is done by employing a greedy algorithm
that selects only the highest priority potential phase marker
available beyond an interval of δmin instructions but within
the next δmax instructions as the next region boundary
(Figure 2a). If no such marker exists, the first potential phase
marker encountered is selected as the next region boundary,
regardless of its priority (Figure 2b). Region boundaries are
represented as triplets: (Image, PCoffset, Count), denoting the
object/library, instruction address offset from the Image’s
base address, and the address’s count.

Figure 3 shows the classification of all the markers
identified by Viper in SPEC CPU2017 applications, along
with the chosen markers that serve as the region boundaries.
We observe that applications like 638.imagick_s.1,
657.xz_s.1, and 657.xz_s.2 have a few or no
barriers. Therefore, most of the selected markers are ordinary
loops that serve as region boundaries. On the other hand,
Viper selects as many barrier-bounded regions as possible,
as observed in cases such as 607.cactuBSSN_s.1,
621.wrf_s.1, 644.nab_s.1, 654.roms_s.1, etc.

B. REGION PROFILING
Accurately capturing the execution behavior of a multi-
threaded code region can be complex as threads synchronize
at different points using various synchronization primitives,
and the execution pattern of each thread may vary across mul-
tiple runs due to differences in memory access patterns [17].
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FIGURE 3. The percentage distribution of the type of markers (barriers,
task loops, and inner loops) identified in the 8-threaded SPEC CPU2017
benchmarks using train inputs. Potential Markers denote all the available
markers in the application, while Selected Markers signify the markers
that serve as the boundaries of regions.

In Viper, we achieve this by using basic block vectors or
BBVs as described in prior works [1], [4], [6]. A BBV is
the execution fingerprint of a particular interval represented
using basic blocks and their counts. BarrierPoint [4] showed
that using LRU stack distance vectors (LDVs) along with
BBVs can result in better clustering results. An LDV
represents a fingerprint of the LRU-stack distance vector for
a particular interval, which helps distinguish the regions that
execute the same code but have different memory access
patterns. We combine BBVs and LDVs on a per-thread
level for each region to form per-thread signature vectors or
SVs [4]. In order to represent amulti-threaded region, we con-
catenate the per-thread SVs to form a multi-threaded SV,
which captures the amount of parallelism among the threads.
The multi-threaded SVs are used for clustering to determine
the similarity among the identified regions. We collect all the
signature vectors using a high-level emulator.

C. DETERMINING THE REGION SIMILARITY
Once the application regions are identified and profiled, the
next step is to determine the regions with similar execution
characteristics in order to group them together and determine
representative regions from among them. This is done based
on the profiling information collected for each region which
consists of multi-threaded SVs derived from the BBVs and
LDVs of all threads, which are projected down to a smaller,
fixed dimension. In our experiments, we use 1024 dimensions
which could result in higher sampling accuracy and is a
good trade-off with respect to the performance. The resulting
SVs are then clustered using the k-means [37] clustering
algorithm to group similar regions. We use the SimPoint [1]
infrastructure to perform the clustering.

D. FAST AND ACCURATE FAST-FORWARDING
To speed up the simulation, representative regions of the
application identified in the clustering stage are simulated in
detail, whereas all the other regions are fast-forwarded. Note
that this is applicable only for microarchitecture-level sim-
ulators, and for RTL-level simulators, we create simulation
checkpoints as discussed in Section III-F. During the fast-
forwarding phase, we ensure that all of the application threads
make similar forward progress in time at regular intervals.

This is particularly important because both the functional and
timing simulations are disabled during this phase, which can
lead to thread orderings that would not typically occur.

E. THE WARMUP CHALLENGE
One major challenge in sampled simulation is building an
accurate microarchitectural state before the start of every
region to be simulated in detail. It is essential to choose a
method that is flexible enough to support different cache
configurations and can quickly build the right state, as this
can significantly impact the overall speedup achieved. In this
work, we choose the memory timestamp record (MTR) [38]
warmup technique that can quickly build the cache state at run
time. From our experiments, we observed that the harmonic
mean of the slowdown due to MTR reconstruction is just
7.97% for SPEC CPU2017 benchmarks using train inputs.
We implement MTR to collect the cache line information
accessed by each load and store instruction during
simulation, ordered in LRU fashion per set. The requests
are then injected into the cache in the right order to
rebuild the appropriate cache state before the simulation. We
focus explicitly on cache warming in simulation, as smaller
structures like prefetchers tend to warm up rapidly. For our
RTL-level simulations, we simulate a warmup region right
before the start of detailed performance measurements of the
simulation region.

F. GENERATING SIMULATION CHECKPOINTS
Checkpointing is a widely used technique to capture the
system state as a checkpoint and later restore it. We use
the application binaries to guide the microarchitecture-
level simulations. In order to guide RTL simulations,
we create RISC-V full-system checkpoints using the MINJIE
infrastructure [28]. MINJIE is an open-source platform that
integrates a set of tools for pre-silicon validation and verifica-
tion. MINJIE provides an instruction set interpreter/emulator
called NEMU, which is used for checkpoint generation. The
checkpoints are restored to simulate them in parallel on the
RTL implementation of XiangShan [28] RISC-V processor
using Verilator [29].

FIGURE 4. Plot (a) shows the aggregate IPC of the full run, and plot
(b) shows the reconstructed IPC of the 644.nab_s.1 benchmark (SPEC
CPU2017) using Viper. This example shows the benchmark running with
test inputs using eight threads. The shaded regions in the plot
(b) represent the regions simulated in detail.
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G. SIMULATION OF REPRESENTATIVE REGIONS
We assume that the region that lies the closest to the cluster
centroid is the representative of that cluster. Once the cluster
representatives are identified, these regions are simulated
in parallel using the generated checkpoints. To demonstrate
the applicability of the proposed methodology to both
microarchitecture-level and RTL-level simulations, we per-
form simulations on Sniper (microarchitecture-level) and
Verilator (RTL-level). We use the MTR warmup technique
to rebuild the right micro-architecture state and inject it into
the simulator before the detailed simulation, as discussed in
Section III-E. The performance of the overall workload is
estimated from the performance obtained from the simulation
of the representative regions. Figure 4 shows Viper’s
IPC reconstruction from representatives of 644.nab_s.1
benchmark using test inputs.

IV. EXPERIMENTAL SETUP
In this section, we discuss the experimental setup to evaluate
the Viper methodology. We describe the workloads and the
platform used to conduct the experiments.

A. SIMULATION TOOLS
We implemented the support for Viper on Sniper [26]
version 7.4, which is configured to model Intel’s Gainestown
microarchitecture, which is the latest hardware-validated
microarchitecture available on Sniper. More details on the
configuration used for the simulation are shown in Table 1.
Wemodified the front-end of Sniper to support Viper’s region
specification. However, we expect that implementing this
region specification support on other software simulators like
gem5 [22], [23] or ZSim [39] is possible. For RTL-level
simulations, we use Verilator [29] to simulate the RISC-V
processor XiangShan [28] using the checkpoints generated
using the MINJIE platform. In this work, we generate the
simulation checkpoints using NEMU [28]. The methodology
is also applicable to other RTL simulators (like VCS [40]) if
corresponding checkpoints are generated.

TABLE 1. The configuration of Gainestown microarchitecture.

B. BENCHMARKS USED
SPEC CPU2017 benchmark suite [41] is a widely used
collection of applications used for computer architecture
evaluation and exploration. The benchmarks are written in
C, C++, Fortran, or a combination of these programming
languages. We use the multi-threaded OpenMP-based subset
of the SPEC CPU2017 benchmarks that are enabled for
multi-threaded execution. We use the speed version of these
benchmarks configured to use eight threads. Note that these

are multi-threaded benchmarks that synchronize and share
memory. SPEC CPU2017 benchmarks use three different
inputs: test, train, and reference (ref). We configure the
SPEC CPU2017 benchmarks to use the train inputs for
our evaluation. These benchmarks are compiled for x86-64
architecture using GCC 6.4.0 and gfortran with the -O3
optimization compiler flag. The multi-threaded benchmarks
are configured to use passive OpenMP thread wait policy.

C. ANALYSIS TOOLS
Weuse Intel’s Pin [42] to build the analysis and profiling tools
(Pintools) that we use for this methodology. We also utilize
the Dynamic Control Flow Graph (DCFG) tool [36] included
in the Pin distribution to collect potential markers that are
used to identify regions. DCFG collects the trace information
of the application, which can be utilized by implementing
a pintool to detect barriers and loops that can act as region
markers.

V. EVALUATION
In this section, we describe the experimental results of the
proposed methodology. We also present the key factors that
affect the performance of the methodology.

A. COMPARISON WITH STATE-OF-THE-ART
We first show the estimated wall time of full RTL simulation
and Viper using XiangShan on Verilator. The,n we evaluate
the accuracy and performance of Viper using the Sniper
simulator and compare it with LoopPoint, the state-of-
the-art sampled simulation methodology for multi-threaded
applications [6]. We then conduct detailed studies on how
region length affects speedup and accuracy. Unfortunately,
it is not possible to evaluate the accuracy of Viper on
XiangShan as full RTL simulation may take more than a year
for SPEC CPU2017 benchmarks using train inputs.

In our experiments, we calculate the average value
by taking the geometric mean of the values across all
benchmarks as advised by previous work [43].

FIGURE 5. A comparison of the estimated wall time to simulate SPEC
CPU2017 benchmarks using train inputs and eight threads for the full
simulation (Full RTL) and Viper. We use the simulation rate of XiangShan
on Verilator and assume parallel simulation of all the representative
simulation checkpoints.

1) RTL-LEVEL SIMULATION
Figure 5 shows the estimated total time required to simulate
SPEC CPU2017 benchmarks using Verilator. We observe
that the sampling efficiency is bounded by the largest region
identified by the sampling methodology. It is imperative to
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identify smaller regions to significantly reduce the simulation
time of these large workloads, which is now possible using
Viper.

2) ACCURACY
Viper achieves similar or better error rates as compared to
prior multi-threaded sampling methodologies like Barrier-
Point or LoopPoint. To measure the sampling accuracy of the
proposed methodology, we compare the simulation runtimes
Tfull obtained from the full simulation and Tsample obtained
from the sampled simulation. The absolute runtime prediction

error 1 can be represented as 1 = |1 −
Tsample
Tfull

|.

FIGURE 6. A comparison of the absolute runtime prediction error for
Viper and LoopPoint for SPEC CPU2017 benchmarks that use train inputs
running eight threads.

Figure 6 shows a comparison of absolute runtime pre-
diction errors with Viper and LoopPoint obtained for the
8-threaded SPEC CPU2017 benchmarks using train inputs.
Viper performs similarly to LoopPoint while achieving lower
maximum and average (1.32%) errors. The results validate
that choosing regions that are aligned to application phases,
while potentially much smaller in length, can achieve better
accuracies.

We evaluate the performance of Viper for 16 threads using
the same set of SPEC CPU2017 benchmarks along with
train inputs (except for 657.xz_s.1 and 657.xz_s.2,
which run only with one thread and four threads, respec-
tively). For the rest of the benchmarks, we observe an
average absolute error in predicting the runtime to be
1.79%. The maximum error that we observe is 5.29% (for
603.bwaves_s.2), whereas the minimum error is 0.01%
(for 638.imagick_s.1).

3) SPEEDUP
The speedup is the ratio of the wall time required for the
full simulation to that of the sampled simulation. We define
serial speedup as the speedup achieved when the samples
are simulated sequentially, whereas parallel speedup is the
speedup achieved when the samples are simulated in parallel.
Note that the analysis time of the benchmarks is excluded
from the speedup calculation as this is often a one-time cost
that is amortized over multiple simulations.

We compare the speedup of the proposed methodology
with LoopPoint as shown in Figure 7a (parallel speedup)
and Figure 7b (serial speedup). Viper outperforms LoopPoint

in all but one case for parallel speedup, as shown in
Figure 7a. We observe that Viper samples fewer but
larger loop-bounded regions compared to LoopPoint for
627.cam4_s.1 resulting in larger simulation times. This is
because 627.cam4_s.1 has larger loops, and unlike Loop-
Point, Viper favors larger loops for higher accuracy. In the
case of serial simulations, Viper outperforms LoopPoint in
most cases (9 out of 14) in Figure 7b. The maximum serial
speedup achieved by the proposed methodology is 6.23×as
compared to the full simulation. The primary reason behind
achieving a larger speedup is that the region size of Viper
corresponds to the phase boundaries of the application.

In Figure 8, we compare the estimated serial speedup
of Viper with that of LoopPoint. Viper achieves notably
higher speedup when compared to LoopPoint for the SPEC
CPU2017 benchmarks that use ref inputs. We estimate the
speedup achieved for these large benchmarks by computing
the ratio of the number of instructions in the full simulation
to that of the sampled simulation of the benchmarks.

The maximum speedup achieved by Viper is approxi-
mately 7,490×, which is more than the maximum serial
speedup achieved for LoopPoint. The primary reason
behind the improved speedup is that Viper selects a more
fine-grained representative sample of the application as the
regions are identified based on the hierarchical structure.
Benchmarks like 627.cam4_s.1 and 628.pop2_s.1
perform slightly better for LoopPoint as the hierarchical
structure of these benchmarks is not easy to detect.

B. VARYING REGION SIZES
We use Viper methodology to illustrate the experimental
results using different region sizes to show their effect on
error rates. We also show the importance of choosing regions
inherent to the application structure instead of fixed-size
slices. We use Viper to select fixed-size regions of 10 million,
20 million, 50 million, and 100 million instructions.

1) ACCURACY
We show the accuracy in predicting the runtime of
each of the benchmarks. In general, larger region
sizes can improve accuracy, but there are a num-
ber of outliers, as shown in Figure 9. For example,
in the case of 628.pop2_s.1, 638.imagick_s.1,
or 654.roms_s.1, the error decreases with an increase
in region size. However, larger region size does not always
yield better accuracy in some other cases. For example,
benchmarks like 603.bwaves_s.1, 621.wrf_s.1 and
627.cam4_s.1 achieve their best accuracies when the
region size is around 50million.We infer from the experiment
that there is no general region size that can be used for
every application due to the differences in loop behavior.
This motivates us to choose region sizes that are application-
dependent.

The average error of Viper-100M (regions of size ≈

100M ) is 0.74%, whereas that for Viper is 1.32%. Although
using a larger region size yields a slightly better average error,
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FIGURE 7. A speedup comparison of LoopPoint and Viper for the 8-threaded SPEC CPU2017 benchmarks using train inputs.

FIGURE 8. A comparison of estimated serial speedup achieved for Viper
and LoopPoint for SPEC CPU2017 benchmarks that use ref inputs running
eight threads. On average, Viper achieves better speedup (686×) as
compared to LoopPoint (200×).

Viper consistently achieves better accuracy when simulating
most benchmarks.

2) SPEEDUP
As Figure 9b shows, the serial speedup is larger for smaller
atomic region sizes in most cases (although the errors can
be higher). For smaller region sizes, clustering allows there
to be fewer instructions to be simulated in detail overall,
which allows for a larger speedup. However, in certain cases,
the number of regions to be simulated in detail can be
much more when the region sizes are smaller. For example,
649.fotonik3d_s.1 achieves a smaller speedup at
region size 20M when compared with that of region size
50M. Comparing Figure 7b with Figure 9b, we observe that
the speedup achieved using Viper-100M is similar to that of
LoopPoint.

VI. RELATED WORK
In this section, we present the relevant prior research that
investigates workload sampling and simulation.

A. SINGLE-THREADED SAMPLING
SimPoint [1] uses Basic Block Vectors (BBVs) as unique
signatures to represent instruction streams with fixed length
intervals based on the fact that code sections that perform
similarly should traverse similar sequences of basic blocks.
SMARTS [2] proposed a systematic sampling framework
that simulated programs by alternating among fast-forward,
warm-up, and detailed simulation phases and obtaining IPC
samples for each detailed simulation. LiveSim [44] is another

simulator that uses statistical sampling with confidence levels
to estimate IPC. They extended the framework by using
in-memory checkpoints to enable interactive simulations.

B. MULTI-THREADED SAMPLING
SimFlex [45] proposed a sampling technique for multi-
processor workloads by sampling on processors that execute
the program’s critical path. COTSon [46] targeted the full
software stack and complete hardware models to ensure
both high performance and accuracy. Time-Based Sampling
methodologies [3], [11] introduced a generic simulation
framework for multi-threaded applications based on the pro-
gressed time. BarrierPoint [4] and TaskPoint [13] leveraged
the structures in multi-threaded programs by using barriers
and tasks as the unit of work, respectively. LoopPoint [6]
proposed to enable a generic profiling-based sampling
methodology that uses loop boundaries as the heuristic
for demarcating representative regions. LoopPoint identifies
similarly sized regions that are, however, not suitable for
RTL-level simulations.

C. ANALYTICAL MODELING
Eyerman et al. [47] proposed a model to divide the dynamic
instruction stream into long-latency miss events that limit
the scope of out-of-order behaviors. RPPM [48] takes into
account synchronization overheads by identifying critical
paths to project multi-threaded performance. Statstack [49]
and Linear branch entropy [50] are proposed to model the
cache miss ratio of a fully associative cache and the branch
miss rate of any branch predictor, respectively.

D. WARMUP TECHNIQUES
There are primarily three kinds of warmup techniques: sta-
tistical warming, checkpoint-based warming, and functional
warming. Statistical warming techniques [38], [51], [52]
reconstruct the cache state by collecting all the memory
access information. Unlike prior works, DeLorean [53]
collects only a selected number of key reuse distances
to speed up the statistical warming. CoolSim [54] uses
virtualized fast-forwarding to speed up the performance of
collecting memory reuse information. Memory Hierarchy
State [55] is a checkpoint-based technique that saves the
state of major microarchitecture components into a touched
memory image.
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FIGURE 9. The runtime prediction error and speedup achieved for the 8-threaded SPEC CPU2017 benchmarks using train inputs. Viper is used to
identify regions of fixed sizes.

E. SIMULATION INFRASTRUCTURES
Gem5 [22] is a cycle-accurate simulator that models CPU
pipelines and cache protocols in fine granularity. Sniper [26]
and ZSim [39] are fast multi-core simulators that use
binary instrumentation to speed up functional simulations.
Apart from microarchitecture-level simulators, RTL-level
simulators like Verilator [29], VCS [40], etc., are commonly
used for performance evaluation, correctness checking,
and validation. These software-based RTL simulators are
extremely slow for large-scale designs as compared to
FPGA-based RTL simulators like FireSim [34].

VII. CONCLUSION
In this work, we propose a novel sampled simulation method-
ology and infrastructure called Viper that shows significant
improvement in performance over the existingmethodologies
which is applicable to both microarchitecture-level and RTL-
level simulators. Viper is both a fast (358× speedup on
average) and an accurate (with an average error of just 1.32%)
simulation methodology as evaluated with the multi-threaded
subset of SPEC CPU2017 benchmarks using train inputs.
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