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Abstract—With the massive advancement of fabrication tech-
nology in recent past, the attempt to execute all kinds of tasks
on a shared, multicore platform has grown into a wide research
area. The growth of safety-critical systems has resulted in a major
design issue of maintaining tight timing constraints for safety-
critical and mission-critical workloads. A mix of tasks with differ-
ent criticalities are deployed in a system, called mixed-criticality
system, and there exist various scheduling algorithms to meet the
real-time constraints of such systems. This paper discusses a novel
algorithm for scheduling mixed-criticality sporadic real-time jobs
in a hard affinity multicore environment. The dynamic slack
generated at run-time while executing jobs is used to schedule low
criticality tasks without missing high criticality task deadlines.
This work attempts to reduce the unproductive time and to
increase the number of completed low criticality jobs without
compromising any high criticality job execution. Experimental
evaluation with synthetic benchmark suites shows 73.9% and
85.2% improvement in time utilization when compared with
EDF-VD and CBEDF respectively.

Index Terms—Mixed-criticality systems; multicore scheduling
algorithm; sporadic task systems.

I. INTRODUCTION

A mixed-criticality task differs from a traditional real-time
task because of the additional criticality constraint. There
is a defined maximum criticality level for each task, and a
job of that task can take criticality value less than or equal
to the maximum criticality level of the task. At a higher
criticality level, the applications need to be certified by Cer-
tification Authorities (CAs). Hence the worst-case execution
time (WCET) used by CA for these tasks will be larger, as
the verification time would be more with conservativeness.
CAs are usually pessimistic with their WCET analysis on high
criticality jobs while the system designer is more concerned
about schedulability of all the jobs. The increasing demand
for high processing power, and the size, weight and power
(SWaP) constraints urge to deploy mixed-criticality tasks on
multicore platforms, which makes mixed-criticality scheduling
theory [1] more complex.

The task model used here is the same as that of a standard
mixed-criticality task model which is used in most of the
relevant literature [2]. There will be ’χ’ execution times for
a χ-level task, where χ ∈ N. So, the execution time (C)
in a mixed-criticality system (MCS) [3] is a vector with L
coordinates, where L ∈ N is the maximum criticality level of
the system.

Now, the execution time vector of a task τi,
−→
Ci ∈ QL

+, can
be represented as:

−→
Ci = [Ci(1), Ci(2), . . . , Ci(χi), . . . , Ci(L)]

where χi is the criticality of the task τi.
−→
Ci always has

L coordinates even though the criticality of the task τi is
identified only till χi < L. The remaining levels will have
the execution times same as the execution time at level χi.
That is,

Ci(χi) = Ci(χi + 1) = . . . = Ci(L)

The execution time identified at each level is the WCET at
that level.

Hence a typical task in MCS can be defined by a 4-tuple
of parameters τi = (χi, Pi,

−→
Ci, Di). Given below are the

descriptions of the parameters.
• χi ∈ N is the criticality of the task τi.
• Pi ∈ Q+ is the minimum time between the releases of

two consecutive jobs of the same task τi, usually called
as period of the task.

•
−→
Ci ∈ QL

+ is the vector representing the WCET estimates
of the task at levels ranging from 1 to L.

• Di ∈ Q+ is the maximum time after the release of the
job upto which the job of a task τi is allowed in the ready
queue, usually called as the deadline of the task.

The criticality of the jobs of task τi can be any natural
number ≤ χi depending on the time upto which the job has
finished its execution. The system also has a criticality which
starts in the lowest criticality mode. The criticality of the sys-
tem changes when the behavior of the jobs changes, eventually
reaching the highest criticality mode. This work assumes dual
criticality levels with Level-1 as LO (no certification needed)
and Level-2 as HI (certification needed). A task is said to be
in LO criticality at any moment when its job has a criticality
less than the system criticality at that moment.

The processor clock frequency has ceased to grow in the
recent past, which resulted in the growth of multicore proces-
sors. The use of multicore processors in designing embedded
systems is a growing trend. There would be an increase in uti-
lization without much increase in energy consumption for mul-
ticore systems when compared with multiprocessor systems.
High amount of parallelism can be achieved through multicore
processors as the cores are tightly coupled on the same
die and load-sharing is not complex. Also, multiprocessors
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have higher communication delay and operating frequency.
Various power management techniques like Dynamic Voltage
Frequency Scaling (DVFS) and dynamic procrastination can
be more effective in multicore systems [4], [5].

When most of the recent works in real-time systems are
aligned with multicore processors, it would be equitable that
mixed-criticality systems as well advance in that direction.
Multicore and manycore systems are the best solutions for a
system which inhibits different kinds of complex, independent
and less-predictable workloads.

Most of the algorithms in-place for mixed-criticality
scheduling do not consider the execution of LO criticality jobs.
The ratio of number of failed LO criticality jobs over total
number of LO criticality jobs is pretty high. Whenever there
is space for LO criticality job(s), it needs to get executed even
if the system is in HI criticality mode without compromising
the deadline of any HI criticality job. A job is said have failed
when it could not finish execution within its deadline. This
work addresses increasing the performance of LO criticality
jobs thereby reducing cascaded failures and unproductive
time. Cascaded failures occur when a currently executing job
triggers the failure of the jobs following it.

The scheduling algorithm which we present here is divided
into three parts. The first part is Pre-scheduler, in which the
HI criticality tasks are assigned to different cores based on
first-fit decreasing bin-packing algorithm. The second part is
SlackFinder which finds the available slack for a LO criticality
job in a core at a particular time. The third part is Run-time
scheduler which schedules HI criticality jobs in each core,
executes SlackFinder, and tries to best-fit LO criticality jobs
in the schedule of a core.

The remaining part of the paper is organized as follows.
Section II describes the state of the art literature survey in
multicore mixed-criticality scheduling. In Section III, we de-
scribe the work which is proposed with an example. Section IV
describes the theoretical evaluation. The next section explains
the experimental setup used in the evaluation of the results.
The experimental results are shown in Section VI and we
conclude the paper in Section VII.

II. RELATED WORK

MCS has proven to be a dynamic and promising area
of research and a significant amount of work has started
since the last decade, and has increased manifolds ever since.
Vestal’s [6] work on Fixed Priority (FP) scheduling provided
some important insights into the nature of mixed-criticality
scheduling and presented a modified Preemptive Fixed Priority
(PFP) schedulability analysis. He modelled task parameters
such as WCET based on the criticality levels. The same code
would thus have higher WCET if it is defined to be safety
critical than it would otherwise. The first part of [6] presented a
period transformation technique which modifies the workload
in a way that HI criticality tasks get higher priorities and this
approach augmented schedulability of multi-criticality systems
if context-switching and code-slicing overheads are ignored.
The underlying principle is that if a HI criticality task has

a larger period than that of a LO criticality task then run-
time slicing is used to schedule the HI criticality task such
that it has a smaller period and execution time. The second
part of [6] provided a scheduling technique using Audsley’s
priority assignment algorithm which can serve either as an
alternative or used in combination with period transformation.
The performance metric used to evaluate these techniques was
the critical scaling factor. Period transformation combined with
the modified analysis provided better results than Deadline
Monotonic scheduling regardless of whether priorities were
assigned using Deadline Monotonic ordering or Audsley’s
algorithm.

This was followed by the work of Baruah and Vestal [2] in
2008 which used a mixed-criticality sporadic task model, and
conducted an in-depth study of schedulability and feasibility
issues for mixed-criticality systems on uniprocessor platforms.
They determined the relative abilities of various kinds of
scheduling algorithms such as Earliest Deadline First (EDF),
FP algorithms etc. There are multi-criticality sporadic task
systems which are not schedulable by Fixed Task Priority
(FTP) or Fixed Job Priority (FJP) algorithms but can be
scheduled by Dynamic Priority (DP) algorithms. Furthermore,
it gave an important result that EDF is no longer an optimal
algorithm when multiple criticality levels were introduced.
In fact, scheduling strategies of FTP and EDF cannot be
compared with each other when it comes to scheduling of
multi-criticality sporadic task systems as there are mixed-
criticality sporadic task systems which are schedulable by
one algorithm but not by the other. They proposed a hybrid-
scheduling algorithm for scheduling multi-criticality sporadic
task systems which dominated EDF and also Vestal’s previ-
ously proposed algorithm.

Baruah et al. [7], [8] proposed EDF with Virtual Deadlines
(EDF-VD) which could schedule mixed-criticality task sys-
tems for any number of criticality levels. EDF-VD is optimal
with respect to metrics such as processor speedup factor and
utilisation bounds. Furthermore, two extensions of EDF-VD
were proposed in [8] to enhance its performance. They used
a mixed-criticality sporadic task model for the analysis of
implicit-deadline systems and arbitrary-deadline systems. The
EDF-VD scheduler reduces deadline of HI criticality tasks
when the system is in a LO criticality mode to ensure schedula-
bility across a criticality change. EDF-VD may sometimes turn
out to be excessively pessimistic and end up discarding LO
criticality jobs altogether while executing in the HI criticality
mode. Also once the system switches to HI criticality mode
it never returns to the lower criticalities.

Park and Kim [9] proposed a dynamic slack based algo-
rithm called Criticality Based Earliest Deadline First (CBEDF)
for scheduling dual-criticality task systems on uniprocessor
platforms. In CBEDF, the LO criticality tasks are executed
in the slack generated by HI criticality tasks. It provided
the schedulability test for the algorithm and showed that it
outperforms those of previously proposed algorithms such as
OCBP [10] and EDF. CBEDF suffers from the problem of a
cascading effect of multiple LO criticality jobs failing to finish



before their deadlines and hogging the processor unnecessarily,
while it could have been used more productively. Cascading
failures of LO criticality jobs reduce the productivity of the
processor as the time used to partially execute such jobs could
have been otherwise used to do productive work.

The idea to use multiple computing modules in MCS is not
new. Researchers tend to use multicore processors over mul-
tiprocessors because of their higher productivity with reduced
energy consumption. Various multicore and multiprocessor
algorithms were developed and proved to be optimal for MC
tasks.

Mollison et al. [11] suggested an architecture for scheduling
MC tasks on multiprocessor platforms which assumed five
levels of criticality. They analyzed the schedulability of such
a system to prove it to be optimal. Li et al. [12] modified
EDF-VD [7] and combined it with fpEDF [13] to design a
global scheduling algorithm for mixed-criticality task systems
on multiprocessors. A job which gets preempted from one
processor may resume its execution in another processor. This
algorithm does not consider the processor migration time of a
task which is not negligible. The performance of the algorithm
was similar to that of EDF-VD. Once the system criticality
reaches HI, the LO criticality jobs won’t receive any further
execution time.

In [14], Lee et al. extended the fluid scheduling model [15]
to fit for mixed-criticality multiprocessor systems which they
call MC-Fluid. The rate of execution of a task in fluid model is
in proportion to its utilization. In MC-Fluid, the criticality of
the task was also considered to determine the rate of execution.
Thus a task in MC-Fluid has two execution rates - one when
the system is in LO-mode and one when the system is in HI-
mode. All LO criticality jobs that arrive after the mode switch
are discarded.

Ren et al. [16] proposed an algorithm (TG-PEDF) for
scheduling mixed-criticality tasks on multiprocessor systems.
In TG-PEDF, all tasks had been grouped in such a way that
no two HI criticality tasks were in the same group, i.e., every
HI criticality task was grouped with a subset of LO criticality
tasks. The groups were scheduled under EDF scheme. Here,
HI criticality tasks were isolated among each other and all
LO criticality tasks were scheduled as best-effort. The results
proved to outperform some for the existing multiprocessor
MC scheduling algorithms for a better performance of LO
criticality tasks.

In [17], Giannopoulou et al. considered the effects of
resource sharing in multicore MCS. Jobs may stall waiting
for a resource thereby increasing their execution times. They
suggested a model for timing isolation on core level and global
level, which allows only same criticality tasks to be executed
simultaneously.

This work addresses the problem of unproductive processor
utilization because of (i) discarding the LO criticality jobs in
HI criticality mode, and (ii) cascaded failures.

III. PROPOSED WORK

This work proposes SMILEY: Scheduler for Mixed-
crIticality multicorE sYstems - a novel scheduling algorithm
for mixed-criticality real-time tasks in multicore processors.
Existing schedulers like EDF-VD [8] and CBEDF [9] con-
centrates on satisfying the schedulability of HI criticality jobs
which results in LO criticality jobs missing their deadlines,
even when there exists a feasible schedule with LO criticality
jobs. This work focuses on designing a scheduler which
maximizes the multicore processor utilization by executing
maximum number of LO criticality jobs to completion without
missing any HI criticality job’s deadline.

The performance of a system is directly proportional to the
productive processor utilization when the utilization is beyond
100%. The productive processor utilization is calculated as the
total time used for executing completed jobs over total avail-
able execution time. Cascaded failures of LO criticality jobs
result in low productive time. SMILEY devices a mechanism
to check whether it is feasible to schedule a LO criticality
job without missing deadlines of any HI criticality jobs, when
the system is in HI criticality mode. Only the jobs which can
finish their execution without deadline miss are allowed to
schedule, which overcomes cascaded failures and guarantees
better quality of service. This is achieved by finding maximum
available slack between the current time and the deadline of
the LO criticality job. The LO criticality job is admitted for
execution only if the slack is larger than the WCET of that LO
criticality job. All LO criticality jobs join global queue and are
allocated to the same core where the previous instant of the
same task executed, whenever possible. SMILEY reduces the
number of decision points and the complexity of each decision.

A. The Algorithm

SMILEY is divided into three parts: 1. A Pre-scheduler
which statically allocates all HI criticality tasks to cores;
2. SlackFinder that finds the slack available in a core for
the execution of LO criticality jobs at run-time; 3. Run-time
Scheduler that schedules all the HI criticality jobs and the
admitted LO criticality jobs in the system.

1) Pre-scheduler: This part is done offline and the re-
sults are used only when the system shifts to HI criticality
mode. Pre-scheduler (Algorithm 1) follows first-fit decreasing
(FFD) [18] bin packing with sorting order as period, and then
as HI criticality utilization to assign HI criticality tasks to cores
statically. HI criticality utilization of a task is the utilization
while considering the task’s HI criticality execution time.

Pre-scheduler outputs the minimum number of cores (Nπ)
required for executing all the HI criticality jobs successfully
when the system is in HI criticality mode, and the task set
for each core. It returns error if number of cores in need
for HI criticality tasks are more than the total number of
cores available (Πmax) and we assume that Πmax cores can
successfully schedule all the tasks in LO criticality mode with
EDF scheduling algorithm. The remaining cores (Πmax−Nπ)
can either be shutdown or be used to execute the rejected LO



criticality jobs (in Run-time Scheduler). The other variables
used in the algorithm are defined below:

• TasksHI : Set of HI criticality tasks sorted by non-
increasing order of their period and then by HI criticality
utilization
(a) TasksHIi.µ : HI criticality utilization of ith task
(b) TasksHIi.π : Core allocated for ith task

• NHI : Total number of HI criticality tasks
• π : Set of all available cores in the system

(a) πj .µ : Utilization of jth core
(b) πj .k : Number of tasks allocated to jth core

• Umax : Maximum schedulable utilization of a core

Algorithm 1: Pre-scheduler
Input: TasksHI , NHI , Umax, Πmax

Output: Nπ , TasksHI
1 forall Cores πj (0 ≤ j < Πmax) do
2 πj .µ← 0; πj .k ← 0;
3 end
4 q ← 0; for i← 0 to NHI − 1 do
5 for j ← 0 to q do
6 if πj .µ+ TasksHIi.µ ≤ Umax then
7 πj .µ← πj .µ+ TasksHIi.µ
8 πj .k ← πj .k + 1
9 TasksHIi.π ← j

10 break
11 end
12 end
13 if j > q then
14 if j = Πmax then
15 return −1
16 end
17 q ← q + 1
18 πq.µ← TasksHIi.µ
19 πq.k ← 1
20 TasksHIi.π ← q
21 end
22 end
23 return Nπ ← q + 1

2) SlackFinder: SlackFinder (Algorithm 2), invoked in
Run-time Scheduler, determines the slack available for a LO
criticality job in a core at a particular time. For a LO criticality
job JLO with deadline DLO at time currT ime (≤ DLO), we
need to consider the parameters as described below.

• S1 : Set of jobs that are already present in local ready
queue (ReadyQ)

• S2 : Set of jobs that arrives between currT ime and DLO

• Dmax : Maximum of the deadlines of all jobs present in
S1 and S2, with hyperperiod as upper limit

• S3 : Set of jobs that will arrive after DLO with deadlines
less than or equal to Dmax

• S4 : Set of jobs that will arrive after DLO with deadlines
greater than Dmax

Since jobs in S1, S2 and S3 have deadlines before Dmax,
these jobs have to execute completely by Dmax. Only a portion
of the jobs in S4 need to be executed between DLO and Dmax

which is calculated as

WCET (JS4)× (Dmax −Arrival(JS4))× UHI

Deadline(JS4)−Arrival(JS4)

where job JS4 ∈ S4 and UHI (= πj .µ) is the total
utilization of HI criticality tasks allocated to that core (πj).

Let S = S1 ∪S2 ∪S3 ∪S4. Hence, S is the set of jobs with
complete or partial executions within the interval currT ime
to Dmax. SlackFinder sorts all the jobs in S in decreasing
order of their deadlines. At each decision point, the jobs with
deadlines greater than or equal to the present time (t) are
considered. The idle times between currT ime and DLO are
taken as slack of JLO in that core. The other variables used
in Algorithm 2 are mentioned below:

• Dmax = Maximum deadline of all jobs available and are
arriving in ReadyQ till DLO

• S = Set of jobs available between currT ime and Dmax,
sorted in non-increasing order of their deadlines

Algorithm 2: SlackFinder
Input: ReadyQ, currT ime, DLO, UHI

Output: Slack
1 Slack ← 0
2 t← Dmax

3 while S ̸= ∅ do
4 J ← dequeue S
5 if J.deadline > Dmax then

6 t← t− J.wcet× (Dmax − J.arrival)× UHI

J.deadline− J.arrival
7 end
8 else if J.deadline ≥ t then
9 t← t− J.wcet

10 end
11 else
12 if t < DLO then
13 Slack ← Slack + t− J.deadline
14 end
15 t← J.deadline− J.wcet
16 end
17 end
18 if t > DLO then
19 t← DLO

20 end
21 Slack ← Slack + t− currT ime
22 return Slack

3) Run-time scheduler: Run-time scheduler (Algorithm 3)
is responsible for scheduling HI criticality and LO criticality
jobs admitted in the local ready queue (ReadyQj) of each
core (πj). All HI criticality jobs allocated to a specific core are
added directly to its ready queue whereas all LO criticality jobs
join the global queue, JobQueueLO. The number of decision



points in each core is the distinct arrival and completion times
of the allocated HI criticality or LO criticality jobs. At each
decision point of a core, an acceptance test is performed for all
jobs in the JobQueueLO. It finds the available slack between
current time and the deadline of the LO criticality job in each
core. If the slack is sufficient enough to accommodate the job,
it is transferred to that core’s (ΠLO) local queue. If more than
one core has sufficient slack, then the one with least slack
(SlackLO) greater than LO criticality job’s WCET is chosen.
All the jobs in local ready queue are then scheduled according
to EDF scheduling algorithm.

For each core πk (0 ≤ k < Nπ), arrival or completion of its
allocated HI or LO criticality jobs to / from its local queue is a
decision point (nextDecisionPoint). For each decision point
of a core πk, if JobQueueLO is not locked, then πk acquires
lock on JobQueueLO and checks each job in JobQueueLO.
It allocates the jobs to corresponding πl (0 ≤ l < Nπ) or
rejects according to the algorithm given in Fig. 3.

Example 1: Consider the following task set τ with param-
eters as mentioned in Table I.

TABLE I: Task set for SMILEY

τi χi Pi ci(1) ci(2) Di

τ0 2 10 1 3 10
τ1 2 10 2 5 10
τ2 2 15 2 3 15
τ3 2 15 4 6 15
τ4 2 30 5 10 30
τ5 1 10 3 3 10
τ6 1 10 2 2 10
τ7 1 15 4 4 15

We consider tasks with a maximum of two levels of crit-
icality. Tasks τ0, τ1, τ2, τ3, and τ4 are HI criticality tasks
whereas τ5, τ6, and τ7 are LO criticality tasks. The execution
time for each task at LO criticality is given by ci(1) and that
at HI criticality is given by ci(2). All the HI criticality tasks
are initially sorted in non-increasing order of their periods.
Hence, the HI criticality tasks τ4 and τ3 will join with core
0, and τ2, τ1 and τ0 with core 1. All LO criticality jobs will
join with a global queue and these jobs are checked for its
acceptance at each decision point. Fig. 1a and Fig. 1b shows
the resultant schedule produced by SMILEY using 2 cores.
The first subscript in the notation Jx,y means the task index
and the second one means the job instance of the task.

The accepted list of LO criticality jobs are J5,0, J6,0 and
J5,1. The list of rejected jobs are J7,0, J6,1, J7,1, J5,2 and J6,2.
At time 0, the JobQueueLO has J5,0, J6,0 and J7,0 available
ready for execution. The slack available in core 0 and core 1 at
time 0 is 8 units and 0 units respectively. Hence, job J5,0 with
WCET of 3 units is accepted in the ready queue of core 0. For
J6,0 with WCET of 2 units, the slacks available are 5 units
and 0 units respectively. J6,0 is accepted in the ready queue of
core 0. For J7,0 with WCET of 4 units, the slack available are
3 units and 0 units respectively. Hence J7,0 is rejected by both
the cores. In the above example, SMILEY offers a schedule

with 100% productive time whereas CBEDF and EDF-VD can
offer 90% and 93.4% productive time respectively.

IV. THEORETICAL ANALYSIS

A. Schedulability and Correctness

This work assumes hard affinity tasks with no migration
and all the basic scheduling requirements of a traditional MCS
held valid. That is, in a dual criticality system, all jobs need to
meet its deadline when the system is in LO criticality mode.
We consider that the system follows EDF schedule when it is
in LO criticality mode. When the system is in HI criticality
mode, all the jobs fired by HI criticality tasks need to meet
its deadlines and the status of LO criticality jobs are not
taken into account. All HI criticality jobs are allocated to its
corresponding cores and they must meet their deadlines. Since
allocation of HI criticality tasks to cores happens statically
using FFD algorithm considering the WCET (utilization) of
the task, HI criticality jobs are always guaranteed to complete
before their deadlines in an EDF schedule. The HI criticality
utilization at HI-level,

UHI
HI =

∑
i|χi = HI

Ci(HI)

Pi
≤ Nπ ∗ Umax

where Nπ is the minimum number of cores required and Umax

is the maximum schedulable utilization (= 1 here). For each
core πj , ∑

i |τi is alloted to πj

Ci(HI)

Pi
≤ Umax

Each LO criticality job is assigned to a core only if there
is enough slack to execute the job completely within the core.
Any LO criticality job Ji,j of τi which crosses Ci(LO) is
killed. If the number of available cores is less than the required
number calculated by Pre-scheduler, then the task-set will be
rejected.

B. Complexity

Pre-scheduler implements FFD bin-packing algorithm. It in-
volves (i) sorting of HI criticality tasks, and (ii) allocating tasks
to cores based on their utilization using First Fit Algorithm.
The time complexity involved here is O(NHI . logNHI), when
NHI is the number of HI criticality tasks. Pre-scheduler is a
one-time operation.

SlackFinder finds the slack available for a core at a par-
ticular time instant. Sorting is required to populate S. The
time complexity of this algorithm is dependent on the num-
ber of jobs available between currT ime and Dmax. Hence
this phase is also polynomial time bounded with complexity
O(νs log νs), where νs is the number of jobs available in S
between currT ime and Dmax. SMILEY (Fig. 3) runs on all
cores. The scheduler gets invoked when there is (i) an arrival
of a HI criticality job, (ii) an arrival of a LO criticality job,
(iii) a departure of a HI criticality job, and (iv) a departure of
a LO criticality job.



Algorithm 3: Run-time Scheduler
Input: TasksHI , TasksLO, Nπ

Output: SMILEY schedule
Global Data Structures: ReadyQ0, ReadyQ1, . . . , ReadyQNπ−1, JobQueueLO, SlackLO, ΠLO

1 currT ime← 0
2 forall Cores πk (0 ≤ k < Nπ) do
3 ReadyQk ← ∅
4 end
5 foreach Core πk (0 ≤ k < Nπ) do
6 while currT ime < hyperperiodglobal do
7 forall HI criticality jobs Ji,j (where TasksHIi is allocated to πk) arriving at currT ime do
8 ReadyQk ← ReadyQk ∪ Ji,j
9 end

10 while at currT ime, JobQueueLO is not empty do
11 if JobQueueLO is locked then
12 break
13 end
14 Acquire lock on JobQueueLO

15 SlackLO ← hyperperiodglobal
16 ΠLO ← −1
17 forall Cores πl (0 ≤ l < Nπ) do
18 CheckAllocation(currT ime, l, ReadyQl, πl.µ)
19 end
20 if ΠLO ̸= −1 then
21 Acquire lock on ReadyQΠLO

22 ReadyQΠLO
← ReadyQΠLO

∪ JobQueueLO.front()
23 Release lock on ReadyQΠLO

24 end
25 dequeue JobQueueLO.front()
26 Release lock on JobQueueLO

27 end
28 Schedule job ReadyQk.front() till nextDecisionPoint
29 currT ime← nextDecisionPoint
30 end
31 end
32 Function CheckAllocation(currT ime, i, ReadyQ, Ui):
33 Slacki ← SlackFinder(ReadyQ, currT ime, JobQueueLO.front().deadline, Ui)
34 if Slacki ≥ JobQueueLO.front().wcet and Slacki < SlackLO then
35 SlackLO ← Slacki
36 ΠLO ← i
37 end
38 End Function

J5,0 J6,0 J3,0 J5,1 J4,0 J3,1

0 3 5 11 14 24 30

(a) Core 0

J0,0 J1,0 J2,0 J0,1 J1,1 J2,1 J0,2 J1,2

0 3 8 11 14 19 22 25 30

(b) Core 1

Fig. 1: SMILEY schedule



Steps 2 to 4 has a complexity O(Nπ). Another loop with
loop count = number of decision-points begins at step 6 and
ends at step 30. Steps 7 to 9 has a linear time complexity
proportional to the number of jobs arriving at currT ime to
the core. Steps 17 to 19 has O(Nπ) calls to the function
CheckAllocation, which has the same time complexity as
that of SlackFinder. Hence the time complexity for this loop
becomes O(Nπ) ∗O(νs log νs). This shows that the run-time
scheduling phase is polynomial time bounded which proves
SMILEY is polynomial time bounded.

V. EXPERIMENTAL SETUP

The experiments were conducted on SimMCSched, a mul-
ticore simulation environment created for this project using
C++. SimMCSched takes task set corresponding to HI criti-
cality tasks (TasksHI) and LO criticality tasks (TasksLO)
as input. It also takes the maximum number of cores (Πmax)
and allowed maximum utilization per core (Umax) as input.
The maximum allowed utilization depends on the maximum
number of HI criticality tasks per core and the scheduling
algorithm in use. SimMCSched assumes all tasks are sporadic
in nature with HI and LO criticality levels. The actual execu-
tion time of jobs is assumed to be same as WCET, and the
scheduling and preemption overheads are negligibly small. The
system is assumed to be in HI criticality mode.

The task sets are generated with random execution times and
periods, with varying number of tasks and total utilizations.
Total utilization of a task set consisting of N tasks is calculated

as
∑N−1

i=0

Ci(χi)

Pi
, for a task τi with Pi as period, χi as its

criticality level and Ci(k) as the execution time at level k.
For each HI criticality utilization, a set of 100 different task
sets are generated and the average value of the parameter to
be evaluated for all the 100 task sets is taken for analysis.
Within 100 task sets, the hyperperiod varies from 900 units
to 32000 units. LO criticality task sets are created for varying
utilizations (40% to 65%), while the HI criticality utilization is
set to 70%. The number of tasks in both HI and LO criticality
task sets are also varied for evaluation.

The experimental parameters used for analysis are total
productive time and number of decision points.The total
productive time is defined as the sum of actual execution times
of all the finished HI criticality jobs and LO criticality jobs in
a hyperperiod, which for evaluation purposes, is normalized
with hyperperiod. The number of decision points is the total
number of decisions a core takes within the hyperperiod. For
each core, the number of decision points include all arrivals
and departures of HI criticality jobs and admitted LO criticality
jobs, which is normalized with total number of jobs and total
productive time. SimMCSched implements SMILEY, EDF-
VD, and CBEDF algorithms.

VI. EXPERIMENTAL RESULTS

In this section, we compare the experimental results of
SMILEY with two existing algorithms. The following graphs
exemplify the results obtained.

A. Unproductive Time

In Fig. 2, Unproductive Time (in percentage) is plotted
against the utilization of LO criticality jobs (LO Utilization).
We define Unproductive Time as

Unproductive Time =
Hyperperiod− Total Productive Time

Time available for LO execution
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Fig. 2: LO Utilization vs Unproductive Time

The performance of algorithm is better when the value of
Unproductive Time is low. Irrespective of task-set, SMILEY
offers the least Unproductive Time compared to other two
algorithms. It is observed that 73.9% and 85.2% of saving
in Unproductive Time is obtained in comparison with EDF-
VD and CBEDF respectively. This is because of the increase
in number of finished LO criticality jobs in SMILEY. All
the algorithms show negative slope with increase in LO
Utilization, which means that the Unproductive Time gets
reduced. For lower LO Utilization values, the number of jobs
available for filling the Unproductive Time is lesser compared
to that of increased utilization.

B. Decisions Per Job

Fig. 3 shows the plot of the number of (in percentage) deci-
sion points per job (Decisions per Job) against LO Utilization.
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Fig. 3: LO Utilization vs Decisions per Job



Irrespective of algorithm, Decisions per Job shows slight
reduction with increase in LO Utilization. This is because,
many LO criticality jobs gets rejected with increase in LO
Utilization. SMILEY is observed to have 20% and 2.7% lesser
values for Decisions per Job when compared with EDF-VD
and CBEDF respectively.

C. Decisions Per Productive Time

The plot between the number (in percentage) of decision
points per productive time (Decisions per Productive Time)
and LO Utilization is shown in Fig. 4.
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Fig. 4: LO Utilization vs Decisions per Productive Time

Irrespective of algorithm, Decisions per Productive Time
decreases with increase in LO Utilization. When the utilization
increases, many jobs get rejected at first instance itself. SMI-
LEY is observed to have 50.3% and 43.9% lesser values when
compared to EDF-VD and CBEDF respectively. SMILEY has
lesser number of decisions as it inserts a LO criticality job in
the ready queue only if the job can be completed.

VII. CONCLUSIONS

This work proposed SMILEY, a mixed-criticality schedul-
ing algorithm for multicore systems. The results show that
SMILEY outperform widely used mixed-criticality scheduling
algorithms like EDF-VD and CBEDF. SMILEY along with
the other algorithms were simulated for uniprocessor and
multicore platforms.

It is observed that there is an increase in productive time for
SMILEY. The unproductive time in SMILEY has reduced by
73.9% and 85.2% when compared with EDF-VD and CBEDF
respectively. SMILEY has 20% and 2.7% lesser values for the
number of decision points taken per job correspondingly. Like-
wise, the number of decision points taken per productive time
has also reduced by 50.3% and 43.9%. Essentially, SMILEY
tries to include maximum number of LO criticality jobs and
thus maximizing the productive time without compromising
the execution of HI criticality jobs.
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