
Accelerating the Evaluation of Large Workloads on
Post-Dennard Systems with Sampling

Alen Kandathumthodukayil Sabu

National University of Singapore
2024

Accelerating the Evaluation of Large Workloads on
Post-Dennard Systems with Sampling

Alen Kandathumthodukayil Sabu
(M.E., BITS-Pilani)

A Thesis Submitted for
the degree of Doctor of Philosophy

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

National University of Singapore

2024

Supervisor:
Assistant Professor Trevor Erik Carlson

Examiners:
Professor Li-Shiuan Peh

Associate Professor Weng-Fai Wong

Declaration

I hereby declare that this thesis is my original work and that I have written it in its entirety. I

have duly acknowledged all sources of information which have been used in the thesis.

This thesis has not been submitted for any degree in any university previously.

—————————–

Alen Kandathumthodukayil Sabu

December 05, 2024

Dedicated to my family, who made me possible.

Iam silver and exact. I have no preconceptions.

Whatever I see I swallow immediately

Just as it is, unmisted by love or dislike.

I am not cruel, only truthful

The eye of a little god, four-cornered.

Most of the time I meditate on the opposite wall.

It is pink , with speckles. I have looked at it so long

I think it is part of my heart. But it flickers.

Faces and darkness separate us over and over.

Sylvia Plath

Acknowledgments

I never imagined that the clunky, white machine with a black-and-white CRT monitor run-
ning Windows 95 that I first encountered in primary school would evolve into the powerful
computers we have today. In school, our access to computers was very limited. The Internet,
accessed through slow landline dial-up connections, often required tens of seconds to load a
single webpage. We could access broadband Internet at local computer cafes (an earlier form
of Internet-as-a-service?) offering slightly faster connections. Those were the days when floppy
disks and cassette tapes were being replaced by CDs. Computers evolved rapidly and became
increasingly affordable. As a millennial, I was fortunate enough to witness firsthand the tech-
nological shifts of that era. My growing interest in mathematics and programming during my
senior year of high school led me to pursue an undergraduate degree in computer science right
after the Great Recession.

I often wonder what might have been had I chosen a different path, perhaps in mathematics or
literature. Irregardless, pursuing computer science was indeed a great choice, and the journey
has been quite an adventure, especially over the past six years. From sleepless nights, rejections,
and handling depression to moments of accomplishment, I can’t say it hasn’t been a fun ride.
While pursuing knowledge and going through tough times, this phase of my life was also about
self-reflection and exploration.

Looking back on the times that inspired me to pursue academic research, I am grateful for
the influence of my family. My mom, dad, and sister have always been my biggest supporters.
Their trust and encouragement have been the bedrock upon which I have built my aspirations.
I am indebted to my grandfathers, whose passion for knowledge, scientific temper, and sense
of righteousness have had a significant impact on my life. My extended family was helpful
throughout, especially my amazing cousins. They always welcomed me with open arms and
open hearts during my travels. I can confidently attest that they are truly the best. I am
indebted to several inspiring teachers who have shaped my academic journey. In particular, my
senior high school physics teacher, Jerin Jose, introduced me to research thinking, and later,
Biju Raveendran motivated me to pursue systems research for my master’s thesis. I am grateful
to the many inspiring individuals I interacted with at BITS Pilani (Goa), especially Sreejith
Vidhyadharan, Bharat Deshpande, and Anguraj Baskar, among others. My stint at NetApp
exposed me to the field of systems performance modeling and measurement. The freedom to

x

explore recent publications and work on improving performance models was a unique experience
that ignited my passion for research in the area.

I want to express my heartfelt gratitude to my advisor, Trevor E. Carlson, for his guidance, sup-
port, and encouragement throughout my PhD. His mentorship was instrumental in shaping me
into the researcher I am today. Despite our occasional disagreements, he was consistently patient
and understanding right from our first meeting in Bengaluru. He was particularly supportive
during tough times, such as the COVID-19 pandemic, when it was hard to be productive. His
emphasis on research ethics (particularly when conducting experiments) and kindness toward
fellow researchers (since we often received harsh comments instead of constructive criticism
from conference reviewers) have significantly influenced my approach to academic research. As
a well-recognized figure in computer architecture conferences, Trevor often introduced me to
other researchers as an expert in sampling and simulation methodologies, which significantly
benefited me during my job search.

I was fortunate to have Harish Patil and Wim Heirman as my collaborators throughout my PhD.
Their insights and expertise were invaluable to my research. Given the extensive interaction we
have had, Harish was a co-advisor during my PhD. He constantly encouraged me and helped me
throughout. I also had the privilege of working under his mentorship during my internship at
Intel. At a time when few companies were hiring, Harish went the extra mile to secure me this
opportunity. The six months I spent working with him were both enjoyable and intellectually
stimulating.

I am grateful for the thought-provoking and inspiring conversations with numerous computer
architecture researchers and practitioners. I would like to acknowledge the helpful interactions
with Lizy John, Lieven Eeckhout, Jason Lowe-Power, Magnus Sjalander, Timothy Pinkston,
Yifan Sun, and Matt Sinclair, which helped refine my research direction and ensure its relevance.
Although limited, I benefited from insightful conversations with industry experts like Gilles
Pokam, Gabriel Loh, Alexander Isaev, Karthik Sankaranarayanan, Sudhavana Gurumurthi,
Jason Clemens, and Joseph Greathouse. Their perspectives were instrumental in broadening
my research in this field. I would like to extend my gratitude to my thesis examiners, Li-Shiuan
Peh and Weng-Fai Wong, and the department representative, Ambuj Varshney, for their kind
and constructive feedback. Their careful reviews significantly improved the quality of my thesis.

I am thankful to the entire CompArch group (Trevor’s research group at NUS) for fostering a
supportive and collaborative environment. Even though many of us have not worked together
directly, the camaraderie and enthusiasm within the group have been a constant source of
inspiration. I would also like to thank Stephanie Hepner for her assistance in proofreading my
papers. The CompArch group was relatively small when I joined in 2018. Jinho Lee was the
sole PhD student in the group at the time. We experienced the highs and lows of academic life
together, offering mutual support as we navigated the challenges. Neethu Mallya helped me get
started in the Singaporean academic environment. She was helpful in several aspects, including
discussions about potential research directions. Andreas Diavastos was always available for
both research and personal conversations, providing invaluable support. His comments on my
papers were of great help. The group began to grow with individuals from diverse backgrounds.

xi

Soon, Ali Hajiabadi, Burin Amornpaissanon, and Newton Singh joined, followed by Ahmed
Shalabi and Razvan Nitu. We shared many memorable experiences, including Friday evening
basketball games and group outings. Coffee chats with Ali and Andreas were the perfect respite
after a day of computer architecture. However, the COVID-19 pandemic disrupted these social
gatherings. Post-pandemic, we resumed group activities like hiking, biking, and kayaking along
with new members, such as Arash Pashrashid, Yun Chen, Yaswanth Tavva, Lingfeng Pei, Miao
Yu, Tingting Xiang, Wei Siew Liew, Changxi Liu, and Yihao Fu. The camaraderie within
the group fostered stimulating conversations and cultural exchanges. I had the pleasure of
collaborating with Changxi Liu on several projects. Our brainstorming sessions over Indian
food were always productive. I also collaborated with Qingxuan (Ray) Kang and Akanksha
Chaudhari on a project. In the latter part of my PhD, I had the opportunity to work with
Jikun Zhang on some interesting projects. These experiences, enriched by friendships and
intellectual collaboration, have left me with core memories and a profound appreciation for the
people who shaped my journey.

I would also like to thank several individuals outside of our research group who made my six
years at NUS memorable. Nitya Lakshmanan has been my go-to friend at NUS, and interactions
with her often helped me navigate the challenges of grad school while keeping my sanity intact.
Soundarya Ramesh was incredibly patient and kind during our deep conversations over shared
meals. The workplace was a fun environment, thanks to Ayush Mishra, Raj Joshi, Mohit Upad-
hyay, and Rohan Juneja. Singapore’s warm weather ushered lasting friendships with Ashwin
Ram, Varsha Suresh, Georgina Roca, Ashwin Kumar, Febin Issac, and Ashok Narendranath.
Towards the final stages of my PhD, I met some awesome undergrads like Inaz Begum, Joann
Stanley, and Bebin Joseph, who introduced me to more interesting people. The list would
be incomplete without mentioning Aung Nyein Kyaw (aka “bro”) for graciously brewing both
hot and cold beverages for us over the years. Among those I met at conferences who greatly
appreciated various aspects of my research include Charles Hong, Zhantong Qiu, Nandeeka
Nayak, and Hyokeun Lee. Zhantong collaborated with me on a project, and her excitement
about building simulators is a perpetual mystery to me. I would like to express my heartfelt
appreciation to my long-time friends, who have been a constant source of encouragement. In
particular, I would like to thank Ijaz Muhamed, Michelle Varghese, Krishnanand SJ, Rahul
Udayakumar, Tobin Mathew, Gokul Rajan, Vipin TM, Majo Oommen, Baptist Joseph, Indra-
jeet Khandekar, Prashant Singh, Anjali Ajayan, and Anand Sasidharan. Their presence in my
life has made this journey memorable and enjoyable. I would also like to express my sincerest
gratitude and appreciation to the staff at SoC, UHC, UCS, and the cafeterias for their valuable
service throughout my PhD. Finally, I would like to acknowledge the generous grants from Intel
Corporation and the travel support provided by IEEE TCCA and ACM SIGARCH during my
doctoral research.

Contents

Acknowledgments ix

Abstract xvii

List of Publications xix

List of Figures xxi

List of Tables xxix

1 Introduction 1
1.1 The Context . 1
1.2 Challenges Involved . 2
1.3 Simulation of Multi-core Systems . 6
1.4 Simulation of Heterogeneous Systems . 8
1.5 Validation of Selected Sample . 9
1.6 Thesis structure . 11

2 Related Work 13
2.1 Workloads and Analyses . 13
2.2 Characterizing Program Execution . 14
2.3 Sampling Single-threaded Workloads . 15
2.4 Sampling Multi-threaded Workloads . 16
2.5 Sampling GPU Workloads . 17
2.6 Analytical Modeling . 18
2.7 Warmup Techniques . 18
2.8 Simulation Infrastructures . 19
2.9 Synthetic Workload Generation . 20
2.10 Checkpointing Techniques . 21

3 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Ap-
plications 23
3.1 Introduction . 23

xiv CONTENTS

3.2 Fast and Generic Multi-threaded Simulation Requirements 27
3.3 The LoopPoint Methodology . 31

3.3.1 Selecting a Unit of Work . 32
3.3.2 Understanding Parallelism . 32
3.3.3 Marking Region Boundaries . 34
3.3.4 Identifying Loops using DCFG . 35
3.3.5 Clustering Representative Regions . 37
3.3.6 Warmup . 38
3.3.7 Runtime Extrapolation . 38
3.3.8 Reproducible Application Execution for Accurate Analysis 39
3.3.9 Putting it All Together . 39
3.3.10 Speed-up Potential . 40
3.3.11 Workload Applicability . 40

3.4 Experimental Setup . 41
3.4.1 Simulation Infrastructure . 41
3.4.2 Workloads . 42
3.4.3 Constrained Execution Infrastructure . 44
3.4.4 DCFG and Basic Blocks . 45
3.4.5 Unconstrained Replay . 45
3.4.6 Synchronization Handling . 46

3.5 Evaluation . 47
3.5.1 Accuracy . 47
3.5.2 Speedup . 51

3.6 Related Work . 54
3.7 Conclusion . 56

4 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core
Simulation 57
4.1 Introduction . 57
4.2 Background and Motivation . 60

4.2.1 Program Sampling . 60
4.2.2 Checkpointing Techniques . 61
4.2.3 Microarchitectural State Warmup . 62
4.2.4 The Quest for Advanced and Efficient Sampling 63

4.3 The Viper Methodology . 63
4.3.1 Exploring the Hierarchical Structure of Program Execution 64
4.3.2 Region Profiling . 67
4.3.3 Determining the Region Similarity . 68
4.3.4 Fast and Accurate Fast-Forwarding . 68
4.3.5 The Warmup Challenge . 69
4.3.6 Generating Simulation Checkpoints . 69
4.3.7 Simulation of Representative Regions . 70

4.4 Experimental Setup . 71

CONTENTS xv

4.4.1 Simulation Tools . 71
4.4.2 Benchmarks Used . 71
4.4.3 Analysis Tools . 72

4.5 Evaluation . 73
4.5.1 Comparison with State-of-the-Art . 73
4.5.2 Varying Region Sizes . 75

4.6 Conclusion . 77

5 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live
Sampling 79
5.1 Introduction . 79
5.2 Simulating Modern Architectures . 83
5.3 The Pac-Sim Methodology . 88

5.3.1 Online Region Detection . 89
5.3.2 Online Region Profiling . 92
5.3.3 Determining Region Similarity . 94
5.3.4 Prediction Mechanism . 95
5.3.5 Simulation by Application Reconstruction 97
5.3.6 Sampled Simulation in Parallel . 98
5.3.7 Microarchitectural Warmup . 99

5.4 Experimental Setup . 100
5.4.1 Simulation Tools . 101
5.4.2 Benchmarks Used . 102

5.5 Evaluation . 103
5.5.1 Comparison with the State-of-the-Art . 106
5.5.2 Case Studies . 110

5.6 Related Work . 116
5.7 Conclusion . 116

6 XPU-Point: Simulator-Agnostic Sample Selection Methodology for Hetero-
geneous CPU-GPU Applications 117
6.1 Introduction . 117
6.2 XPU-Pin Framework . 123

6.2.1 Instrumentation and Analysis Tools . 123
6.3 The Imperative For Efficient Simulation of Heterogeneous Systems 126

6.3.1 The Trend Towards Heterogeneity . 126
6.3.2 Limitations of Traditional Analysis Methodologies 127
6.3.3 Effective Sampling of Heterogeneous Workloads 127
6.3.4 Effects of Microarchitectural Warmup . 128

6.4 XPU-Point Sample Selection Methodology . 129
6.4.1 Workload Distribution on GPUs . 130
6.4.2 Slices of Heterogeneous Applications . 131
6.4.3 Capturing Heterogeneous Execution Profiles 132

xvi CONTENTS

6.4.4 Selecting the Representative Slices . 133
6.4.5 Sample Validation and Tuning . 134
6.4.6 Estimating the Full Application Performance 135

6.5 Experimental Setup . 136
6.6 Evaluation . 137

6.6.1 Comparison with GPU Sample Selection 139
6.6.2 Sample Validation using Native Hardware 141
6.6.3 Evaluation of PyTorch Inference Workloads 145

6.7 Related Work . 147
6.8 Conclusion and Future Directions . 148

7 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Method-
ologies 151
7.1 Introduction . 151
7.2 Background . 156

7.2.1 Sample Selection Methodologies . 156
7.2.2 Sample Validation . 157
7.2.3 Hardware Performance Counters . 157
7.2.4 Instrumentation using Pin . 158

7.3 Methodology and Implementation Details . 158
7.3.1 ROI Selection using Sampling . 158
7.3.2 ROI Specification . 159
7.3.3 ROI Handling in ROIperf . 160

7.4 Experimental Setup . 163
7.4.1 Workloads Used . 163
7.4.2 Sample Selection . 163
7.4.3 Simulators Used . 164

7.5 Evaluation . 164
7.5.1 Testing ROIperf Applicability . 164
7.5.2 Evaluation of Single-threaded Applications 165
7.5.3 Evaluation of Multi-threaded Applications 168

7.6 Related Work . 169
7.7 Conclusion . 170

8 Conclusion and Future Work 171
8.1 Conclusion . 171
8.2 Future Work . 172

Bibliography 177

Abstract

As the traditional Moore’s Law-driven performance gains have plateaued with the end

of Dennard scaling, computer architects adopted novel design strategies to further improve

performance. This marked a radical shift in the design of next-generation computing sys-

tems, including multi-core processors, accelerators, and heterogeneous systems. Evaluating

the performance of complex, realistic workloads running on these systems poses unique

challenges, particularly due to the long simulation times. Sampling serves as a promising

solution by intelligently selecting the representative subsets of a workload for performance

evaluation. In this thesis, we explore novel methodologies to evaluate the performance of

post-Dennard systems in a fast and efficient way using sampling.

To address these challenges, we first propose LoopPoint – a sampled simulation method-

ology that applies to general-purpose multi-threaded workloads. LoopPoint uses application

loops to demarcate regions that represent the amount of work done. We demonstrate that

LoopPoint reduces the simulation time of large multi-threaded workloads from a few years

to a few hours. In a follow-up work, Viper, we make use of the hierarchical structure of

program execution to select regions of finer granularity suitable for RTL-level simulations.

We show that naive adaptations of SimPoint or LoopPoint may not result in an optimal

sample, as the application periodicity and phases vary among workloads.

Modern architectures often incorporate complex dynamic optimization techniques to

improve system performance gains at runtime. However, prior sampled simulation method-

ologies are incapable of handling the dynamic nature of software and hardware. On this

front, we propose Pac-Sim, which can be used to evaluate dynamically optimized software

and hardware. Pac-Sim performs online analysis and relies on a real-time predictor to deter-

mine detailed simulation regions. This allows Pac-Sim to accurately evaluate dynamically

scheduled applications, accounting for any runtime performance variability.

The increasing computational demand posed by high-performance computing and arti-

ficial intelligence workloads is driving the shift toward heterogeneous architectures. Simula-

tion of future heterogeneous systems is essential in understanding the interactions between

compute components, but full-program simulations are prohibitively time-consuming and

resource-intensive. We propose XPU-Point to select representative regions of heterogeneous

CPU-GPU workloads to enable fast, accurate sampled simulations. XPU-Point significantly

speeds up the simulation of HPC and AI workloads without compromising accuracy.

To summarize, we show that simulation solutions alone are insufficient because of the

significant slowdown observed, and sampling works as an efficient technique to render the

simulation of large workloads tractable. We evaluate a variety of multi-core and heteroge-

neous workloads to develop methodologies that accelerate the performance evaluation and

design space exploration of novel architectures.

List of Publications

1. Alen Sabu, Harish Patil, Wim Heirman, Trevor E. Carlson, “LoopPoint: Checkpoint-
driven Sampled Simulation for Multi-threaded Applications,” in IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), 2022.

2. Alen Sabu†, Changxi Liu†, Trevor E. Carlson, “Viper: Utilizing Hierarchical Program
Structure to Accelerate Multi-core Simulation,” in IEEE Access, 2024.

3. Changxi Liu†, Alen Sabu†, Akanksha Chaudhari, Qingxuan Kang, Trevor E. Carlson,
“Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling,” in
ACM Transactions on Architecture and Code Optimization (TACO), 2024.

4. Alen Sabu, Harish Patil, Wim Heirman, Changxi Liu, Trevor E. Carlson, “XPU-Point:
Simulator-Agnostic Sample Selection Methodology for Heterogeneous CPU-GPU Applica-
tions,” in International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2025.

Works in Progress

1. Alen Sabu, Zhantong Qiu, Harish Patil, Changxi Liu, Wim Heirman, Jason Lowe-Power,
Trevor E. Carlson, “Accelerated Simulation of Parallel Workloads using Loop-Bounded
Checkpoints.”

Other Relevant Publications

1. Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, Trevor E. Carl-
son, “ELFies: Executable Region Checkpoints for Performance Analysis and Simulation,”
in International Symposium on Code Generation and Optimization (CGO), 2021.

Non-Refereed / Non-Proceedings

1. Alen Sabu, Harish Patil, Wim Heirman, Trevor E. Carlson, “ROIperf: Rapid Validation
and Iterative Tuning of Workload Sampling Methodologies.” in Workshop on Computer
Architecture Modeling and Simulation (CAMS), 2023.

2. Alen Sabu, Harish Patil, Wim Heirman, Alexander Isaev, Trevor E. Carlson, “Ap-
proaching a High-Performance, General-Purpose Multi-Threaded Sampling Methodology.”
in Young Architect Workshop (YArch), 2020.

† Joint first authors

List of Figures

1.1 The normalized single-core performance scores of (a) integer and (b) floating-
point SPEC CPU benchmarks on various processors over the last 30 years. Per-
formance is measured using scores derived for each processor from the following
SPEC CPU benchmarks: SPECint1995, SPECfp1995, SPECint2000, SPECfp2000,
SPECint2006, SPECfp2006, SPECint2017, and SPECfp2017. The data is col-
lected from spec.org [1]. 3

1.2 The estimated wall-clock times (in seconds) for the full simulation of multi-
threaded (eight OpenMP threads) SPEC CPU2017 benchmarks and SPEChpc
2021 Tiny benchmarks (rank=1) using Reference inputs. The benchmarks were
compiled with the Intel oneAPI toolchain. We assume the simulation speed of
gem5 (CPU portion) and AccelSim (GPU portion) to estimate the wall times
based on the instruction counts of the benchmarks. 4

3.1 Approximate time to evaluate the performance of multi-threaded benchmarks
with different methodologies. The average result and error bars represent the es-
timated simulation time for all benchmarks in the corresponding suite and input
sets, assuming infinite simulation resources (the longest simulation region deter-
mines the overall simulation time). Benchmarks were configured with 8-threads
and passive OpenMP wait policy, assuming a total simulation speed of 100 KIPS. 24

3.2 LoopPoint-based region selection and simulation for multi-threaded workloads.
The workload is captured for analysis and region selection based on loop in-
formation. The representative regions are simulated using a checkpoint-driven
method as well as by binary-driven unconstrained way allowing for extrapolation
of performance and other metrics of interest. 28

3.3 The above graphs show the variation in the share of the per-thread instruction
count on a per-slice (with a slice size of 800M global instructions) basis as the
application progresses. If we consider a multi-threaded region, the basic-block
share is different for all threads. This is subtly captured by concatenating the
per-thread execution fingerprints. 35

xxii LIST OF FIGURES

3.4 An example of a representative region identified by LoopPoint. (3.4a) The num-
bers represent iterations of the corresponding loops that form the 8-threaded
region. The start point and end point of the chosen region are at line 3022, the
entry point of loop u. (3.4b) The top graph shows the variation of IPC over time
for the full application run, while the bottom graph shows that of the chosen
region. The (PC, count) boundaries are marked inside the IPC graph of the region. 36

3.5 The runtime prediction errors of SPEC CPU2017 applications (train inputs) using
active and passive wait policies that use eight threads for unconstrained simula-
tion. The y-axis represents the percent error in predicting the runtime of each of
the applications along the x-axis. 49

3.6 The runtime prediction results of the NPB benchmarks that use 8 and 16 threads.
The applications use a passive wait policy and class C inputs. The y-axis repre-
sents the error percentage in predicting the runtime of each of the applications
on the x-axis. 50

3.7 The prediction errors of various metrics for SPEC CPU2017 benchmarks using
LoopPoint. The benchmarks use active and passive wait policies with train inputs
and eight threads and are simulated in realistic unconstrained mode. 51

3.8 A comparison of theoretical and actual speedups achieved by LoopPoint. The
workload used is SPEC CPU2017 applications (active wait policy) using train
inputs. 52

3.9 LoopPoint and BarrierPoint theoretical speedup for SPEC CPU2017 applications
(passive wait policy) using ref inputs. 52

3.10 A comparison of actual speedups achieved by LoopPoint when the applications
use 8 and 16 cores. Speedups are listed for the NPB suite using the C input set
and a passive wait policy. 54

4.1 The workflow of Viper showing region identification, clustering, and simulation.
The hierarchical structure of an application is used to identify regions. Sampled
simulation is performed based on the clustering information of the regions. The
simulation can be performed on various kinds of simulators depending on the
level of detail required. 64

4.2 The selection of region boundaries (or markers) in an application using Viper.
Marker Mi signifies the beginning of the current region with expected region
lengths to be between δmin and δmax instructions. Mi+1 is finally identified in
accordance with case (a) or (b) (described in section 4.3.1), which marks the end
of the current region. 66

4.3 The percentage distribution of the type of markers (barriers, task loops, and
inner loops) identified in the 8-threaded SPEC CPU2017 benchmarks using train
inputs. Potential Markers denote all the available markers in the application,
while Selected Markers signify the markers that serve as the boundaries of regions. 67

LIST OF FIGURES xxiii

4.4 Plot (a) shows the aggregate IPC of the full run, and plot (b) shows the recon-
structed IPC of the 644.nab_s.1 benchmark using Viper. This example shows
the benchmark running with test inputs using 8 threads. The shaded regions in
the plot (b) represent the regions simulated in detail. 70

4.5 A comparison of the estimated wall time to simulate SPEC CPU2017 benchmarks
using train inputs and 8 threads for the full simulation (Full RTL) and Viper. We
use the simulation rate of XiangShan on Verilator and assume parallel simulation
of all the representative simulation checkpoints. 72

4.6 A comparison of the absolute runtime prediction error for Viper and LoopPoint.
We use SPEC CPU2017 benchmarks that use train inputs and 8 threads. 74

4.7 A speedup comparison of LoopPoint and Viper for the 8-threaded SPEC CPU2017
benchmarks using train inputs. 75

4.8 Runtime prediction error for 8-threaded SPEC CPU2017 benchmarks using train
inputs for different region sizes. 75

4.9 The speedup achieved for 8-threaded SPEC CPU2017 benchmarks using train
inputs. Viper is used to identify regions of fixed sizes. 76

5.1 Performance comparison of Pac-Sim with SMARTS [2] in different settings for
the SPEC benchmark 644.nab_s.1 (multi-threaded version uses 8 threads). The
left graph shows the comparison of runtime prediction errors using different sam-
pled simulation techniques, whereas the right graph shows the overall simulation
time (running on a parallel simulator). Both figures use lower-is-better metrics.
SMARTS-A-B repeatedly switches between a single detailed simulation region of
length A and B fast-forward regions of length A. 84

5.2 The figure shows the resource utilization of a recent multi-threaded sampled
simulation technique, LoopPoint, for the SPEC CPU2017 benchmarks with the
ref inputs running eight OpenMP threads. The graph on the left shows the time
required to generate the profiling data (with checkpoints stored as pinballs [3]),
whereas the graph on the right shows the amount of storage required. 86

5.3 The overall workflow of Pac-Sim methodology. At any given time, the regions
of a multi-threaded workload till Ri are identified (as shown above). First, Pac-
Sim monitors the application code structure to determine an appropriate region
marker Mi+1, which marks both the end of the region Ri and the start of the
region Ri+1. Next, the feature vector and simulation results for Ri are collected,
and a prediction mechanism determines the simulation mode for region Ri+1.
Finally, region Ri+1 will be simulated, either in detail or in fast-forward mode. . 90

5.4 The figure shows the workflow of online BBV generation. Whenever a basic block
BBi is encountered, a corresponding execution fingerprint BBVi is generated
using hash functions applied to the program counter of BBi and the number of
instructions it contains. hash1 to hashd are d distinct hash functions, where d is
the dimension of the BBV. The BBV for each region is obtained by accumulating
all BBVis that belong to the region. 93

xxiv LIST OF FIGURES

5.5 The predictor utilizes the trie [4] data structure to quickly predict the cluster ID
of the next region by searching for a similar history with the same region start
marker Mi. In this example, the cluster ID of the next region is predicted to be
2 since the prior region with the cluster ID of 2 has the same start marker M2

and the longest matching sequence (3 → 3 → 2). Plot (b) shows the accuracy of
the predictor for different benchmark suites. 95

5.6 The graph shows the regions identified using Pac-Sim for the NPB benchmark
ft, grouped together with the respective cluster they belong to. The shaded
portion represents the regions that are simulated in detail. 96

5.7 The workflow of Pac-Sim when the representative regions are simulated in paral-
lel. Pac-Sim starts in the emulation mode, collecting feature vectors and MTR [5]
warmup data online, and then predicts the simulation mode of the next region.
For regions predicted for detailed mode, Pac-Sim forks new processes to perform
warmup and detailed simulation. 99

5.8 A comparison of the absolute runtime prediction error using different method-
ologies, namely, Time-Based Sampling, LoopPoint, and Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. On average, Pac-Sim achieves
better accuracy compared to Time-Based Sampling and LoopPoint. 103

5.9 The parallel and serial speedups achieved using Pac-Sim for 8-threaded SPEC
CPU2017 benchmarks using train inputs. For speedup calculations, the simula-
tion walltime corresponding to Pac-Sim includes both online analysis and simu-
lation time, whereas, for LoopPoint, we consider only the checkpoint simulation
time, excluding the time required for offline profiling and checkpoint genera-
tion. Pac-Sim outperforms both Time-Based Sampling and LoopPoint in terms
of speedup achieved. Note that Time-Based Sampling techniques are not suitable
for sampled simulation in parallel. 104

5.10 The absolute differences in predicting L2 cache misses per kilo instructions (MPKI)
using Pac-Sim as compared to the full detailed simulation. In this experiment,
we use the NPB benchmarks with class A inputs running eight threads. The
geometric mean of the absolute differences in predicting L2 MPKI is 0.23. 104

5.11 The accuracy and serial speedup achieved for Pac-Sim methodology when simu-
lated using three different microarchitectures, namely, Gainestown, Skylake, and
Sunnycove, for NPB benchmarks with class A inputs running eight threads and
one thread. 105

5.12 A comparison of the estimated walltime for fully detailed simulation and sampled
simulation using the serial and parallel versions of Pac-Sim for 8-threaded SPEC
CPU2017 benchmarks using ref inputs. The estimated walltime includes the time
required for online analysis, warmup, and simulation. 108

5.13 The graph shows the percentage of time that Pac-Sim spends at each phase during
the sampled simulation of each benchmark suite (average across all benchmarks).
The Analysis component includes online marker detection, region profiling, clus-
tering, and prediction. 110

LIST OF FIGURES xxv

5.14 Figure shows the average error rates (from five different runs) and error bars
in predicting the runtime of dynamically scheduled benchmarks. We use PAR-
SEC benchmarks with the simlarge input using OmpSs and OpenMP, and NPB
benchmarks with class A inputs using OpenMP runtime. 112

5.15 The aggregate giga (billion) instructions per second (GIPS) of the full run (a),
reconstructed GIPS using Pac-Sim (b), and the varying CPU frequency for all
CPUs (c) 644.nab_s.1 benchmark with train inputs running 8 threads. The
shaded regions in (b) represent the regions simulated in detail. The figures share
the same x-axis. 114

5.16 The figure shows the absolute difference in performance (in terms of runtime)
for NPB benchmarks using class A inputs and 8 threads with (w/) and without
(w/o) SSE2 simulated in detailed mode and with Pac-Sim. 114

6.1 A high-level schematic of XPU-Pin. The x86 CPU instrumentation tool Pin
interacts with GPU instrumentation tools (like GTPin and NVBit) for event-
based callbacks. Integration with similar tools for other hardware components
(x=TPUs, NPUs, accelerators, etc.) is feasible. The simulation phase (not
shown), which is performed using a variety of tools, is handled separately. 118

6.2 The wall time (in seconds) for evaluating realistic heterogeneous CPU-GPU work-
loads such as SPEChpc 2021 benchmarks (tiny set) using ref inputs and PyTorch
Inference runs. Benchmarks were evaluated in (a) native run, (b) profiling us-
ing XPU-Point, (c) parallel simulation of the representative regions identified
using XPU-Point (mean wall time with error bars indicating the shortest- and
longest-running regions), and (d) full-detailed simulation. The experiments are
conducted on machines that use Intel Sapphire Rapids CPU and Intel Ponte Vec-
chio GPU. The simulation wall times are estimated using the simulation rate of
gem5 [6] and Accel-Sim [7]. im=Imperative, ts=TorchScript. 119

6.3 The end-to-end workflow of the XPU-Point methodology to sample heterogeneous
workloads. XPU-Point uses XPU-Profiler to capture execution profiles of a het-
erogeneous workload. Once the representative regions (samples) are identified
for the workload, their performance, as estimated by XPU-Timer (or a hetero-
geneous simulator), is extrapolated and compared with that of the full workload
to validate the sample. 122

6.4 The control flow of XPU-Pin co-analysis tool for an x86 CPU and Intel GPU or
NVIDIA GPU. 126

6.5 The workflow of XPU-Point methodology to capture representative regions (or
ROIs) along with their corresponding weights suitable for the sampled simulation
of heterogeneous workloads. 129

6.6 A comparison of the hierarchical structures used in CUDA and SYCL program-
ming models to distribute kernel execution tasks, showing the level of granularity
at which work is assigned to the execution units. CUDA primarily utilizes the
SIMT execution model, while in SYCL, underlying architecture and implemen-
tations determine the execution model. 130

xxvi LIST OF FIGURES

6.7 The representation of a slice (or region) in XPU-Point. A slice is defined as
the execution window between consecutive kernel calls within a heterogeneous
application. 132

6.8 The concatenation of CPU and GPU BBVs into a longer, combined XPU-BBV
that represents a heterogeneous region in XPU-Point methodology. 134

6.9 The instruction split between CPU and GPU for loop executions in SPECaccel
2023 benchmarks using train inputs. 139

6.10 The number of loops executed on CPU and GPU in SPECaccel 2023 benchmarks
using train inputs. 140

6.11 The sampling errors for the SPECaccel 2023 benchmarks with GPU-only profiles
(GPU-Point) vs. CPU-GPU profiles (XPU-Point). 141

6.12 The sampling errors plotted for the SPEChpc 2021 benchmarks with test
inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled
and validated on an NVIDIA A100 machine. 142

6.13 The simulation speedup plotted for the SPEChpc 2021 benchmarks with test
inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled
and validated on an NVIDIA A100 machine. 142

6.14 The sampling errors obtained for the representative regions identified for SPEChpc
2021 benchmarks that use ref inputs from the tiny set. The representative re-
gions of the benchmarks are generated and validated on an Intel PVC machine. . 143

6.15 The speedup obtained for the representative regions identified for SPEChpc
2021 benchmarks that use ref inputs from the tiny set. 143

6.16 Sampling errors for AutoDock (work-item=8) using different inputs on Intel
and NVIDIA GPU platforms. 144

6.17 The speedup obtained for AutoDock (work-item=8) using different inputs on
Intel and NVIDIA GPU platforms. 144

6.18 The sampling errors for GROMACS in different settings on Intel Iris and
NVIDIA A100 using XPU-Point. 145

6.19 The speedup obtained for GROMACS in different settings on Intel Iris and
NVIDIA A100 using XPU-Point. 145

6.20 The sampling errors obtained for PyTorch Inference runs using XPU-Point
on Intel PVC. im=Imperative, ts=TorchScript. 146

6.21 The speedups obtained during the simulation of PyTorch Inference runs. The
line graph (plotted with the secondary y-axis) shows the number of representative
regions selected using XPU-Point. im=Imperative, ts=TorchScript. 146

LIST OF FIGURES xxvii

6.22 The slowdowns (normalized with the native runtime of the application) for Py-
Torch Inference runs on Intel Ponte Vecchio GPU. The slowdown in Pin-Bare
mode measures the slowdown due to running the benchmarks under Pin with
no instrumentation. To evaluate the slowdown caused by the GTPin Tool, we
use a basic instrumentation tool, Nothing. XPU-Timer uses XPU-Pin to col-
lect the timing information of the benchmarks. The GPU-Profiler profiles the
benchmarks using GTPin to collect BBVs. XPU-Profiler uses XPU-Pin to collect
BBVs of the CPU-GPU execution concurrently. 147

7.1 A comparison of the total wall-time required to validate the representative regions
identified for the multi-threaded SPEC CPU2017 benchmarks using train inputs
(the gap is expected to increase for ref inputs). The bars show a comparison of
the minimum wall time taken to validate the regions (selected using LoopPoint [8]
methodology) on a cycle-level simulator and the ROIperf framework. 152

7.2 An overview of the working of ROIperf framework to validate the regions of
interest (ROIs). The performance of the full workload and the ROIs are measured
on the native hardware. The extrapolated performance is compared with the
performance of the full runs to quantify the sampling error. 155

7.3 The high-level execution flow of an application using the ROIperf tool. Upon
program start, user-defined performance counters are initialized. Measurements
are then activated at the start of ROI and remain active until the end of ROI.
Hardware instruction counts or address (PC) counts are employed to identify the
ROI. 161

7.4 Sampling error in predicting cycles-per-instructions (CPI) for single-threaded
workloads from the SPEC CPU2017 suite using train inputs. The errors were
measured using both a cycle-level simulator and the ROIperf tool running on
Broadwell and Skylake hardware platforms. 166

7.5 Sampling error in predicting the RDTSC values of the single-threaded SPEC
benchmarks using ref input. 166

7.6 A comparison of RDTSC estimation error using ROIperf and runtime estimation
error using CoreSim simulator. The benchmark suite is SPEC CPU2017, and the
benchmarks use 8 threads, train inputs, and active wait policy. The ROIs are
identified using LoopPoint methodology. 169

7.7 A comparison of simulation-based prediction errors with ROIperf results for both
HW_CPU_CYCLES and RDTSC projections on a Skylake Server. We use NPB
benchmarks that use Class C inputs, 8 threads and passive wait policy. 169

List of Tables

1.1 Table summarizes the methodologies proposed in this thesis. We categorize the
methodologies into two main groups: Sample Selection and Validation. The
table also identifies the Analysis Type used by each methodology. Notably,
some methodologies require an upfront analysis or profiling phase to extract
application-specific characteristics. Additionally, the table indicates the primary
applicability of the methodology. 10

3.1 The primary characteristics of the simulated system. 42
3.2 SPEC CPU2017 speed application attributes. F=Fortran, KLOC=thousand lines

of code. From [1] . 42
3.3 SPEC CPU2017 speed synchronization primitives used. sta4=static for, dyn4=dynamic

for, bar=barrier, ma=master, si=single, red=reduction, at=atomic, lck=lock. . . 43

4.1 The configuration of Gainestown microarchitecture. 71

5.1 This table summarizes previously proposed sampled simulation methodologies
for both single-threaded and multi-threaded applications. We categorize these
methodologies into two main groups: Profile-driven and Statistical. The ta-
ble also identifies the Analysis Type used by each methodology. Notably, some
methodologies require an upfront analysis or profiling phase to extract application-
specific characteristics. Additionally, the table indicates which methodologies are
amenable to parallel simulation, which determines the maximum speedup of the
methodology. The field Warmup shows the warmup technique used to recon-
struct the microarchitectural state at the beginning of the detailed simulation.
. 83

5.2 The default parameters of Pac-Sim used in our experiments. 100
5.3 The configuration parameters we used for Gainestown, Skylake, and Sunnycove

microarchitectures on Sniper. 101
5.4 Table shows the IPC of freqmine benchmark from the PARSEC benchmark suite

using the simlarge input for threads 0 through 7. Pac-Sim shows the details of
dynamically scheduled software whose IPC and thread mapping differ across two
runs. 111

6.1 The combinations of CPUs and GPUs for Intel- and NVIDIA-based systems used
to evaluate XPU-Point methodology. 136

6.2 The classification of GROMACS based on the offloading device for the execu-
tion of each calculation. We also use -nsteps 200 with -notunepme for all types.
The last column shows the number of slices for each type. 144

Chapter 1
Introduction

உறƒ° வ¶ேபா½… சா‚கா´ உறƒA MNŠப¶ ேபா½‹ HறŠπ.1

— °றœ: 339

1.1 The Context

Central processing units (CPUs or processors) have long been the cornerstone of com-

puting, responsible for executing instructions and managing system resources. To en-

sure efficient resource allocation and meet the ever-growing computational demands,

accurately estimating the performance of processors is essential. Computer architects

typically rely on microarchitectural simulations to assess system performance metrics

and compare design choices. The processor designs undergo a comprehensive evaluation

of power consumption, performance capabilities, area requirements, and their trade-offs

prior to fabrication.

With the end of Moore’s law [9], computer architects have turned to alternative ap-

proaches to enhance computational capabilities. One prominent strategy involves a

shift towards increasing the core count [10, 11] and embracing heterogeneity in archi-
1(transl.) Death is sinking into slumbers deep; Birth again is waking out of sleep. — Kural: 339

2 Introduction

tectures [12], complemented by the introduction of several software- and system-level

optimizations aimed at improving performance and power efficiencies [13]. As proces-

sors/systems continue to evolve in complexity and power, accurately assessing their

performance characteristics becomes increasingly intricate. Understanding the workload

for the analysis and performance prediction of future systems is an extremely difficult

task. Workloads may have extremely long run times and are fairly sophisticated with

OS, library, and hardware requirements.

Microarchitecture simulators like gem5 [6] and Sniper [14] are heavily used to estimate

the performance of real-world workloads on a new processor design. The purpose of these

simulations is to evaluate the performance of a proposed architecture, identify potential

bottlenecks, and improve the efficiency of the hardware design before it is implemented

in physical hardware. However, simulators are orders of magnitude (typically, 10, 000×

or more [6]) slower as compared to native execution. This challenge is further exac-

erbated by the increasing complexity of modern architectures, which necessitates the

development of efficient performance evaluation techniques. The focus of this thesis is

to address this critical gap by proposing novel workload sampling methodologies that

enable fast and accurate performance evaluation of future systems.

1.2 Challenges Involved

For several decades, Moore’s law, coupled with Dennard scaling [15], fueled exponential

performance gains in single-core processors. This trend is reflected in the significant

performance gains observed for SPECint and SPECfp benchmarks as shown in Fig-

ure 1.1. However, as Dennard scaling reached its physical limits, the industry shifted

its focus to multi-core and heterogeneous architectures. This effectively extended the

performance gains predicted by Moore’s Law but also necessitated the development of

entirely new techniques and infrastructures to accurately evaluate system performance

1.2 Challenges Involved 3

1995 2000 2005 2010 2015 2020 2025
Year

2 6
2 5
2 4
2 3
2 2
2 1
20
21
22
23

SP
EC

in
t P

er
fo

rm
an

ce

Intel
AMD

Sun
IBM

DEC
Others

(a)

1995 2000 2005 2010 2015 2020 2025
Year

2 5
2 4
2 3
2 2
2 1
20
21
22
23
24
25
26
27
28

SP
EC

fp
 P

er
fo

rm
an

ce

Intel
AMD

Sun
IBM

DEC
Others

(b)

Figure 1.1: The normalized single-core performance scores of (a) integer and (b)
floating-point SPEC CPU benchmarks on various processors over the last 30 years.
Performance is measured using scores derived for each processor from the follow-
ing SPEC CPU benchmarks: SPECint1995, SPECfp1995, SPECint2000, SPECfp2000,
SPECint2006, SPECfp2006, SPECint2017, and SPECfp2017. The data is collected from
spec.org [1].

in the post-Dennard era.

The widening performance disparity between microarchitecture simulators and the sys-

tems they model necessitates exploring alternative simulation techniques. Cycle-accurate

full-system simulation, while invaluable for design verification and performance analy-

sis, becomes increasingly time-consuming for multi-core architectures and heterogeneous

CPU-GPU architectures. GPUs, characterized by their numerous execution units with a

large number of threads, can lead to significant slowdowns when simulated on traditional

CPUs [7, 16]. For example, the detailed simulation of SPEC CPU2017 benchmarks may

take months to years, whereas that for the heterogeneous CPU-GPU applications in the

SPEChpc 2021 benchmark suite may take decades, as shown in Figure 1.2. Sampled sim-

ulation is considered a sophisticated solution to making these extremely long simulation

times tractable. This technique employs program analysis to determine representative

regions of an application for detailed simulation. Sampled simulation methodologies ex-

ploit the well-established correlation between executed code and program performance,

https://spec.org/

4 Introduction

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SS
N_s.1

61
9.l

bm
_s.1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.1

64
4.n

ab
_s.1

64
9.f

oto
nik

3d
_s.1

65
4.r

om
s_

s.1

65
7.x

z_
s.1

65
7.x

z_
s.2

50
5.l

bm
_t

51
3.s

om
a_

t

51
8.t

eal
eaf

_t

51
9.c

lvl
eaf

_t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

105

107

109

day

month

year

decade

century

Si
m

.
W

al
lT

im
e

(s
)

Figure 1.2: The estimated wall-clock times (in seconds) for the full simulation of multi-
threaded (eight OpenMP threads) SPEC CPU2017 benchmarks and SPEChpc 2021 Tiny
benchmarks (rank=1) using Reference inputs. The benchmarks were compiled with the
Intel oneAPI toolchain. We assume the simulation speed of gem5 (CPU portion) and
AccelSim (GPU portion) to estimate the wall times based on the instruction counts of
the benchmarks.

as shown in prior research [17, 18].

While there are a number of solutions proposed for sampling single-threaded [2, 19, 20,

21, 22, 23, 24, 25, 26, 27], multi-program [28], and multi-process [29, 30] applications to

accelerate simulation, these techniques are not deemed extensible for multi-threaded and

heterogeneous workloads. Multi-threaded applications tend to synchronize the threads

at certain points during execution and shared memory accesses, presenting a unique

challenge [31]. This challenge is particularly evident in heterogeneous systems, where

diverse compute units are closely integrated. In such cases, representing the amount of

work done by the threads or compute units in terms of instructions per cycle (IPC), as

shown to work for single-core performance, may lead to inaccurate measurements. It is

also challenging to accurately capture or represent the execution pattern of the compute

units, as the exact timing of each compute core can vary greatly.

Existing techniques for the sampled simulation of multi-threaded applications either do

not provide significant speedups to be practical (Time-Based Sampling techniques [32,

1.2 Challenges Involved 5

33] can show less than 10× speedup as compared to fully-detailed simulation) or apply

only to particular synchronization types (BarrierPoint [34] for barrier-based workloads).

A solution is needed that both supports generic multi-threaded applications, irrespective

of the synchronization primitives used, as well as allows for fast evaluation.

Most of the prior research on sampled simulation assumes the system to be static. How-

ever, modern hardware improves its performance and power efficiency by changing the

hardware configuration, like the frequency and voltage of cores, according to a num-

ber of parameters such as the technology used, the workload running, etc. Techniques

such as dynamic voltage and frequency scaling (DVFS) [35, 36, 37], dynamic cache

reconfiguration [38, 39, 40], TurboBoost [41], etc., have been developed to adjust the

hardware state in response to executed instructions and active processes. Additionally,

dynamic scheduling techniques [42] have been developed for multi-threaded applica-

tions. To quickly estimate the performance of multi-threaded applications running on

next-generation dynamic hardware and software, a sampled simulation methodology is

needed that can dynamically adapt to changes in the system at runtime while accurately

determining relevant performance metrics.

The profound increase in the demand for high-performance computing (HPC) resources

in recent years has driven the widespread adoption of heterogeneous architectures, such

as CPU-GPU systems [12]. However, evaluating the performance of these systems poses

a significant challenge due to the lengthy simulations involved. While some efforts have

addressed these challenges for specific workload classes [43, 44], they are often rigid with

respect to region selection and can limit the overall simulation speedup when regions

are large. Existing sampled simulation techniques for GPU kernels [16, 45, 46] may not

represent an accurate performance estimate of the entire system in such cases. This

highlights the need for techniques specifically designed for heterogeneous applications.

6 Introduction

1.3 Simulation of Multi-core Systems

We aim to solve the challenges related to multi-threaded applications and propose a novel

sampled simulation technique, which is both agnostic to the type of synchronization

primitives used and scales by the similarity exhibited by the application. We proposed

LoopPoint [8], a generic multi-threaded sampled simulation methodology that utilizes

application loops to represent the amount of work done by the threads. LoopPoint

combines several vital features, including (a) repeatable, up-front application analysis,

(b) a novel clustering approach to take into account run-time parallelism, and (c) the use

of loop-based simulation markers to divide the work into measurable chunks, even in the

presence of spin-loops. LoopPoint chooses representative regions within a multi-threaded

application that serve as checkpoints, allowing parallel simulation. These checkpoints

can reproduce the performance of the original application and can significantly reduce

simulation runtime compared to prior works.

LoopPoint considers loop-based regions demarcated by loop entries, allowing for re-

peatable regions. By monitoring the amount of work as represented by loops and not

instructions or barriers, we can isolate multi-threaded application representatives and

understand the amount of global work completed. LoopPoint enables synchronization-

agnostic application sampling for multi-threaded workloads while still scaling the amount

of work based on the representative nature of the application. The methodology has

been adapted to widely used microarchitecture simulators like gem5, Sniper, etc., as

well as in the industry. We released the representative checkpoints (as x86 executables

or ELFies [47]) of a subset of SPEC CPU2017 benchmarks for the public to use.

While sampling techniques like BarrierPoint and LoopPoint improve the efficiency of mi-

croarchitectural simulations, the granularity of the identified regions may not be suitable

for achieving comparable speedups at the RTL level. Recent works [48] attempted to

1.3 Simulation of Multi-core Systems 7

adapt prior solutions like SimPoint [20] for RTL-level simulations on Verilator [49] using

smaller region sizes aiming to improve simulation efficiency, which, however, resulted in

accuracy that is typically not acceptable. The result is that it is currently infeasible to

evaluate the performance of large workloads on the RTL level. While FPGA simulation

infrastructures, such as Firesim [50], offer a faster alternative for simulation, FPGAs are

specialized devices with inherent limitations in terms of memory capacity and process-

ing units. Therefore, it is often not possible to fit large, realistic processor models on

FPGAs.

This highlights the need for developing specialized workload sampling methodologies

that can be flexibly applied to both microarchitecture-level and RTL-level simulations.

These methodologies should support finer region granularities that align with the dy-

namic phase behavior exhibited by the application. Previously proposed workload sam-

pling methodologies typically rely on fixed-length intervals for analysis, which can often

be out of sync with the periodicity of program execution. Since an application’s phase

behavior [17, 51, 52] is strongly correlated to the code it executes, it can exhibit a hi-

erarchy of phase behaviors that can be observed at various interval lengths, rendering

conventional sampling techniques inadequate. By tailoring the sampling approach to

capture the specific characteristics and phases of the workload, more accurate and ef-

ficient sampled simulations can be performed at both the microarchitecture and RTL

levels. We proposed Viper to determine the simulation regions more systematically,

which resulted in shorter simulation regions better suited for RTL simulations. Utilizing

the innate program structures instead of fixed-length intervals allows for flexible region

sizes that are more likely to be aligned with the application periodicity, thereby reducing

the possibility of aliasing.

High-performance, multi-core processors are the key to accelerating workloads in sev-

eral application domains. To continue to scale performance at the limit of Moore’s Law

8 Introduction

and Dennard scaling, software and hardware designers have turned to dynamic solutions

that adapt to the needs of applications in a transparent, automatic way. In such cases,

profile-driven sampling methodologies may result in different performances for each exe-

cution. With this level of dynamism, it is essential to simulate next-generation multi-core

processors in a way that can both respond to system changes and accurately determine

system performance metrics. Currently, no sampled simulation platform can achieve

these goals of dynamic, fast, and accurate simulation of multi-threaded workloads.

We proposed Pac-Sim, which is designed for fast and efficient simulation of multi-

threaded applications without the need for any up-front application analysis and al-

lows for the simulation of dynamically scheduled multi-threaded applications even in the

presence of runtime hardware events – this was not possible with previously proposed

sampled simulation methodologies. Pac-Sim includes an online sampling and decision-

making phase based on predictions that rely on previously executed code, thereby com-

pletely eliminating the need for offline profiling. We incorporate application analysis

to guide sampled simulations, similar to SimPoint-like [20] methodologies but with-

out the need for upfront pre-processing, as seen in SMARTS-like [2] methodologies.

Pac-Sim makes intelligent simulation decisions through online learning and implements

lightweight online profiling, clustering, and warmup techniques for optimal performance.

Moreover, the proposed methodology can accommodate hardware state changes, soft-

ware features, and other factors that affect simulation results.

1.4 Simulation of Heterogeneous Systems

The prevalence of CPU-GPU architectures in heterogeneous computing arises from their

ability to address the evolving demands of modern workloads, coupled with their well-

established programming models. GPUs have emerged as the most widely used general-

purpose accelerators in modern data centers [53] and supercomputers [54] that accelerate

1.5 Validation of Selected Sample 9

massively parallel big data analysis [55, 56] and machine learning [57, 58] workloads.

While previous works have investigated characterizing workloads that consist of CPU

components [2, 20, 30, 32, 34] and GPU [45, 46, 59, 60] components independently, as well

as their comparative analyses [61], hybrid solutions that support analysis and workload

reduction for multiple types of heterogeneous workloads, from CPUs, GPUs, and even

custom hardware accelerators (like FPGAs), have not yet been investigated. Given

the importance of these workloads, from HPC systems to data center use, simulation

of heterogeneous workloads is key to understanding the interactions between compute

components and how their interactions can affect overall runtime performance.

We proposed XPU-Point, a unified sampling methodology for heterogeneous workloads

that can accurately (a) understand the workloads running on heterogeneous systems

to (b) build a representative sample for the fast and accurate performance analysis of

the workloads. We also (c) estimate the accuracy of the proposed sampling methodol-

ogy. XPU-Point proposes a comprehensive methodology for the sampled performance

evaluation across a broad spectrum of real-world workloads, from scientific simulations

to artificial intelligence on heterogeneous CPU-GPU architectures. This enables com-

puter architects and performance researchers to quickly estimate the performance of

long-running, heterogeneous workloads using sampled simulation, which was not possi-

ble before. While the primary focus of XPU-Point is to enable sampled microarchitecture

simulation, its methodology can be adapted to broader performance analysis and char-

acterization of several classes of heterogeneous workloads.

1.5 Validation of Selected Sample

Workload sampling can significantly speed up the simulation performance, assuming

the regions of interest (ROIs) or the representative sample found can be proven to

accurately represent the behavior of the full workload. One standard way to validate

10 Introduction

the representativeness [62, 63, 64] of the ROIs is to measure the sampling error, which is

the difference in the performance of the full workload and the extrapolated performance

using the ROIs. The performance is typically obtained through detailed simulations [65].

However, the simulation of long-running workloads is infeasible, taking months to years.

We propose ROIperf, a framework that validates the ROIs selected using workload sam-

pling methodologies. ROIperf leverages the native hardware performance counters [66]

by evaluating both the full workload and its representative regions on real hardware

systems. This approach ensures the validation of ROIs through the performance mea-

surement on real hardware instead of simulation. The methodology is particularly ben-

eficial for long-running programs for which the prevailing simulation-based validation

techniques are infeasible. While this technique does not allow for the performance esti-

mation of future hardware (where timing simulation is needed), this path enables one to

evaluate if the selected ROIs are representative and, therefore, can be used to determine

the overall performance characteristics of the workload accurately. We demonstrate the

efficacy of ROIperf by evaluating various sample selection methodologies across a wide

range of workloads. ROIperf achieves a significant speedup in validating regions selected

for simulation.

Table 1.1: Table summarizes the methodologies proposed in this thesis. We categorize
the methodologies into two main groups: Sample Selection and Validation. The table
also identifies the Analysis Type used by each methodology. Notably, some methodologies
require an upfront analysis or profiling phase to extract application-specific characteris-
tics. Additionally, the table indicates the primary applicability of the methodology.

Methodology Analysis
Type Primary Applicability

Sample
Selection

LoopPoint Statically scheduled multi-threaded applications
Viper Multi-threaded applications on RTL-level simulators
Pac-Sim Dynamically scheduled multi-threaded applications
XPU-Point Heterogeneous CPU-GPU applications

Validation ROIperf Single-threaded and multi-threaded applications

Online Profiling Offline Analysis Offline Profiling

1.6 Thesis structure 11

1.6 Thesis structure

The rest of this thesis is structured as follows. The background and prior work on per-

formance evaluation techniques, sampling, and simulation are reviewed in Chapter 2.

The next five chapters present the primary contributions (summarized in Table 1.1)

of the thesis. We present the motivation, methodology, and results of the LoopPoint

sampled simulation methodology in Chapter 3. We introduce Viper methodology, which

enables faster RTL-level simulations, in Chapter 4 and present our live sampled simu-

lation methodology, Pac-Sim in Chapter 5. In Chapter 6, we present the XPU-Point

methodology for the accurate sample selection in heterogeneous CPU-GPU workloads.

We introduce a novel technique ROIperf to validate the regions of interest identified

by workload sampling methodologies in Chapter 7. Finally, we conclude the thesis in

Chapter 8 with a summary of thesis contributions and present the future directions.

Chapter 2
Related Work

The purpose of computing is insight, not numbers.

— Richard Hamming

In this chapter, we will review the related work for contributions to this thesis.

2.1 Workloads and Analyses

The SPEC CPU benchmarks suite is the de facto benchmark for evaluating the per-

formance of processor designs. It includes a wide variety of applications, such as 3D

rendering, biomedical imaging, and electronic design automation. These benchmarks

are designed to intensively exercise different aspects of a processor, including the front-

end (instruction fetch, branch prediction), the back-end (retirement, function units), and

the memory subsystem (cache hierarchy, prefetching). These benchmarks have large dy-

namic instruction counts in the order of trillions of instructions, which severely affects

the simulation time of detailed performance simulators. Nair et al. [67] studied the phase

behavior of SPEC CPU2006 and SPEC CPU2000 benchmarks and identified simulation

points using SimPoint. Similarly, the single-threaded version of SPEC CPU2017 has been

studied [68, 69]. Several workload characterization techniques are proposed to categorize

14 Related Work

benchmarks into subgroups that exhibit similar behaviors. Hoste et al. [70] demonstrated

that workloads may behave similarly on one microarchitecture but drastically different

on others, motivating the need to profile benchmarks in microarchitecture-independent

ways. They proposed characteristics such as the register-dependent distance, branch

predictability, instruction mix, and data stream working-set size to capture the intrinsic

software behaviors. Shao et al. [71] further introduced ISA-Independent characteriza-

tion, pointing out that specialized architectures are unconstrained by the conventional

instruction set semantics that are presumed by the microarchitecture-independent char-

acterization. They showed that their techniques are useful to rule out ISA-dependent

characteristics such as the register spilling effect and provide insights for hardware spe-

cialization. Alameldeen et al. [72, 73] demonstrated the problems of non-determinism

with multi-threaded workloads. They showed that small timing variations in the soft-

ware or the operating system can affect the process scheduling and execution path of the

program, resulting in false conclusions during design explorations. Alameldeen et al. [31]

also demonstrated that IPC can be a poor performance indicator, leading to inaccurate

estimation of speed-ups in terms of the actual run time of the programs as they may not

reflect useful work done. For example, spin-lock loops can contribute to misleading IPC

increase, and enhancements to instruction sets can decrease IPC even as performance

improves.

2.2 Characterizing Program Execution

A basic block is a sequence of instructions that has single entry and exit points with no

branches or jumps within the sequence. A basic block vector (BBV) is a data structure

that represents a set of basic blocks, storing counts for each executed basic block, and

forms a fingerprint of a region’s execution. It provides a compact representation of

the program’s control flow. Typically, BBVs are collected at regular intervals during

2.3 Sampling Single-threaded Workloads 15

the program execution. Each of these BBVs represents a region of an application that

correlates to region performance [18]. BBVs provide information about how the program

execution behavior changes over time.

LRU stack distance is the number of distinct cache accesses between consecutive accesses

of the same data item [74]. LRU stack distance vectors (LDVs) are data structures that

are used to keep track of the LRU stack distances. LDVs consist of integers associated

with each cache line, representing the number of cache lines accessed between the current

cache line and its most recent access. Shen et al. [75] showed that LDVs can be used to

characterize program behavior. While BBVs focus on analyzing control flow patterns,

LDVs provide insights into memory access patterns and cache behavior. By combining

BBVs and LDVs, a more comprehensive understanding of program behavior can be

achieved [34].

2.3 Sampling Single-threaded Workloads

SimPoint [20] uses basic block vectors (BBVs) as unique signatures to represent instruc-

tion streams with fixed or variable length intervals based on the fact that code sections

that perform similar workloads should traverse similar sequences of basic blocks. The

BBVs are then clustered using the k-means clustering [76] algorithm to identify the

number of phases within the application. A representative region is selected from each

cluster that is assigned a weight proportional to the number of regions that belong to

the cluster. The SimPoint methodology was extended to support x86 applications in

PinPoints methodology [24, 77] using Pin for the BBV generation. However, SimPoint

did not account for performance differences between similar instruction streams due to

micro-architecture and hardware differences, such as the cache states and clock frequency

changes, let alone thread interactions in multi-threaded workloads. SMARTS [2] pro-

posed a systematic sampling framework that simulated programs by alternating among

16 Related Work

fast-forward, warm-up, and detailed simulation phases and obtaining IPC samples for

each detailed simulation. The program IPC can then be estimated with high confidence

using statistical methods. However, it can only be used to estimate the overall IPC

of the program, but not the IPC trace throughout the program execution. Another

work on software phase markers [26] uses loops to determine simulation regions but is

limited in that they only provide support for single-threaded applications using phase

markers denoting phase changes. LiveSim [27] is another simulator that uses statistical

sampling with confidence levels to estimate IPC. They extended the framework by using

in-memory checkpoints at sample regions to enable interactive simulations. pFSA [78]

uses hardware virtualization to spawn processes that fast-forward to regions of interest

(ROIs) at near-native speed and perform detailed simulations in parallel. They also

proposed a novel cache warm-up technique based on estimating the error induced by

insufficient cache warming.

2.4 Sampling Multi-threaded Workloads

Ekman et al. [79] propose a methodology to reduce the number of simulation points

using a matched-pair comparison method to estimate the full application performance.

SimFlex [30] extends SMARTS methodology to support multiprocessor applications with

an increased sample length. SMARTS and SimFlex use random sampling, and there-

fore, the samples are not necessarily representative. Perelman et al. in [52] extend the

Simpoint methodology to use for phase analysis of multi-threaded workloads. COT-

Son [80] targeted the full software stack and complete hardware models to ensure both

high performance and accuracy. Time-based sampling methodologies [32, 33] introduced

a generic simulation framework for multi-threaded applications based on the progressed

time rather than instruction count. However, this bounded the total simulation time to

the length of the program execution, not the structures of the program. Both SimFlex

2.5 Sampling GPU Workloads 17

and Time-based Sampling did not exploit knowledge from the software, such as barriers,

tasks, and loops, which allowed us to break down programs into representative regions

in an informed way. BarrierPoint [34] and TaskPoint [43] leveraged the structures in

multi-threaded programs by using barrier synchronization primitives and tasks in the

task programming paradigm as the units of work, respectively. This allowed automatic

identification of regularities in the software because of the intentions of these software

primitives. However, these methods rely on particular programming paradigms, which

limits their generalities.

2.5 Sampling GPU Workloads

GTPin [81] is an ahead-of-time (AOT) instrumentation tool for workloads that run on

Intel GPUs. In AOT instrumentation, the binary is modified to insert monitoring or

profiling code before the actual execution. Leveraging GTPin, Kambadur et al. [59] pro-

posed a solution to sample workloads running on Intel GPUs. They utilize kernel names,

arguments, and basic block entries to select representative regions of the GPU programs

at a kernel-level granularity. Yu et al.[82, 83] propose a SimPoint-like strategy to detect

representative loops that can be used to extrapolate kernel performance. TBPoint [45]

uses BBVs and other kernel-specific features to identify representative kernels, whereas

Principal Kernel Analysis (PKA) [46] monitors the IPC difference between sampling

units to determine the regions to fast-forward. Both TBPoint and PKA enable the sam-

pled simulation of GPU workloads at both the inter- and intra-kernel levels. Sieve [60]

extends on prior works to show that using the kernel name and instruction count allows

for better sample selection. Photon [16] utilizes GPU Basic Block Vectors (BBVs) for

inter-kernel and intra-kernel workload sampling, resulting in significant improvement in

sampling accuracy compared to previous approaches.

18 Related Work

2.6 Analytical Modeling

Eyerman et al.[84] proposed a model to divide the dynamic instruction stream into

long-latency miss events, such as branch mispredictions and cache misses that limit

the scope of Out-of-Order behaviors. Each interval of the instruction stream can then

be characterized by an analytical latency model based on interval length and latency

type, and the overall performance can be reconstructed from these discrete intervals.

RPPM [85] used multiple performance indicators such as the number of instructions,

branch entropy, and long-latency loads to project single-threaded performance. It also

takes into account synchronization overheads by identifying critical paths to project

multi-threaded performance. However, the fixed mathematical formulation prohibited

the opportunity to estimate the performance of future hardware that has not been seen

before, which requires different analytical formulations. Statstack [86] is proposed to

estimate the cache miss ratio of a fully associative cache with LRU replacement policy. It

uses reuse distance samples (RDS) - the number of memory references between successive

same cache line accesses - to estimate the stack distance distribution. This allows the

cache miss ratio to be accurately estimated for a wide range of cache sizes and programs.

Linear branch entropy [87] is proposed to model the branch miss rate of any branch

predictor by finding a linear relation between the branch entropy and the sampled branch

miss rate per configuration of a branch predictor.

2.7 Warmup Techniques

There are primarily three kinds of warmup techniques: statistical warming, checkpoint-

based warming, and functional warming. Statistical warming techniques reconstruct

the cache state by collecting all the memory access information. For example, Memory

Reference Reuse Latencies (MRRLs) [88] records the number of instructions between

2.8 Simulation Infrastructures 19

consecutive references to each unique memory location. Similar to MRRLs, Memory

Time-stamp Record (MTR) [5] and Boundary Line Reuse Latency (BLRL) [89] also

choose to record memory access information but using different methods. MTR records

the snapshot of memory reference patterns, while BLRL considers reuse latencies across

the boundary line of the pre-sampled and the sampled regions. Unlike prior works,

DeLorean [90] collects only a selected number of key reuse distances to speed up the

statistical warming. CoolSim [91], on the other hand, uses virtualized fast-forwarding to

speed up the performance of collecting memory reuse information. Memory Hierarchy

State [92] is a checkpoint-based warmup technique that saves the state of all the major

microarchitecture components into a touched memory image (TMI) that decreases the

cost to load and store this data.

2.8 Simulation Infrastructures

Gem5 [6] is a cycle-accurate simulator that models CPU pipelines and cache protocols

in fine granularity. However, running large multi-core benchmarks is slow due to their

detailed models. Sniper [14] and ZSim [93] are fast multi-core simulators that use binary

instrumentation to speed up functional simulations. Sniper pipes program execution

traces from the binary instrumentation to its modeling backend for detailed modeling of

various micro-architecture components. This gives Sniper high modularity and flexibil-

ity for employing different modeling strategies at different granularities. ZSim proposed

a two-phase parallelization technique to speed up simulation and used user-level virtu-

alization to enable fast simulation for thousands of cores. While ZSim can provide high

simulation throughput, instruction schedules need to be computed up-front, and apart

from memory hierarchy changes, it does not provide the capability to adjust these sched-

ules at run time. RTL-level simulators are used to simulate and verify the behavior of

digital circuits described at the Register Transfer Level (RTL). Among the most widely

20 Related Work

used RTL simulators are Verilator [49] and VCS [94].

There are several GPU simulators and heterogeneous CPU-GPU simulators available.

GPU simulators are extremely slow [7] as compared to the real execution, as they run

on the CPU, which typically has fewer cores than the GPU being simulated. Trace-

driven GPU simulators, such as MacSim [95], execute functionally generated traces with

a timing model to generate the performance results. Execution-driven GPU simulators,

such as Multi2Sim [96], gem5-gpu [97], MGPUSim [98], gem5 APU [99, 100] and GPG-

PUSim [101], directly execute the binary for performance simulation. Simulators like

Accel-Sim [7] and NVArchSim [102] support both execution- and trace-driven simula-

tion modes. Among these simulators, Multi2Sim, gem5-gpu, MacSim, and gem5 APU

support the simulation of heterogeneous CPU-GPU workloads.

2.9 Synthetic Workload Generation

Synthetic workload generation techniques involve creating lightweight workload clones

that mimic the behavior of real-world applications. These synthetic clones are typically

used in studies related to performance evaluation and benchmarking. MAMPO [103] is a

multithreaded synthetic power virus generation framework targeting multicore systems.

It uses a genetic algorithm to search for the best power virus for a given multicore system

configuration. SynchroTrace [104] is a trace-based multi-threaded simulation method-

ology that accurately replays synchronization- and dependency-aware traces for chip

multiprocessor systems. SynchroTrace achieves this by recording synchronization events

and dependencies in the traces, allowing for the replay on different hardware platforms.

GPGPU-Minibench [83] captures the execution behavior of existing GPGPU workloads

in a profile, which includes a divergence flow statistics graph (DFSG) to characterize the

dynamic control flow behavior of a GPGPU kernel. G-MAP [105] statistically models

the GPU memory access stream locality by considering the regularity in code-localized

2.10 Checkpointing Techniques 21

memory access patterns and the parallelism in the execution model to create miniatur-

ized memory proxies. Mystique [106] is yet another technique that generates benchmarks

from production AI models by leveraging PyTorch execution traces. Ditto [107] focuses

on synthesizing workloads for data centers mimicking traditional CPU performance be-

haviors, like branch mispredictions, cache miss rates, and IPC. However, these techniques

may not be applicable to all workload studies involving cache compression or prefetching.

2.10 Checkpointing Techniques

Checkpointing is a technique used to save the state of a system at specific points in time.

Architectural checkpoints preserve the software-visible state, including the register files

of cores, memory, and I/O device states. Widely used emulators like QEMU [108] and

Simics [109] are used to maintain these states. Microarchitectural checkpoints capture

the states of components such as pipelines, caches, branch predictors, and TLBs.

ELFies [47] are user-level executable checkpoints for regions of interest. Extracted from

deterministic replays of the full-program recording used for profiling, ELFies inherently

capture the initial state of the ROI as observed during profiling. This significantly

reduces the impact of non-repeatability, as it only affects the native execution of the

ELFie itself, not the entire program execution leading up to and within the ROI. How-

ever, imprecise reconstruction of the operating system state during ELFie creation can

lead to system call failures or unpredictable execution behavior. These discrepancies

can introduce deviations from the original execution and potentially cause application

failures.

MINJIE [48] is an open-source platform that integrates a set of tools for pre-silicon

validation, verification, etc. MINJIE provides an instruction set interpreter/emulator

called NEMU, which is used for checkpoint generation. The checkpoints are restored

later to simulate them in parallel on Verilator [49].

Chapter 3
LoopPoint: Checkpoint-driven Sampled
Simulation for Multi-threaded Applications

Truth... is much too complicated to allow for anything but

approximations.
— John von Neumann

In this chapter, we introduce a novel sampling technique for multi-threaded applications
called LoopPoint, which is both agnostic to the type of synchronization primitives used
and scales by the similarity exhibited by the application. LoopPoint combines several vital
features, including (a) repeatable, up-front application analysis, (b) a novel clustering ap-
proach to take into account run-time parallelism, and (c) the use of loop-based simulation
markers to divide the work into measurable chunks, even in the presence of spin-loops.

3.1 Introduction

Sampling is a well-known application workload reduction technique that traces its roots

back decades. From the earliest works [2, 20], researchers have been able to identify reg-

ularity in single-threaded applications and exploit that to sample large applications into

24 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

10 1

100

101

102

103

104

105

Si
m

. T
im

e
(in

 h
ou

rs
)

1 hour

1 day

1 month

1 year

Detailed Sim Time-based Sampling BarrierPoint LoopPoint

Figure 3.1: Approximate time to evaluate the performance of multi-threaded bench-
marks with different methodologies. The average result and error bars represent the es-
timated simulation time for all benchmarks in the corresponding suite and input sets, as-
suming infinite simulation resources (the longest simulation region determines the overall
simulation time). Benchmarks were configured with 8-threads and passive OpenMP wait
policy, assuming a total simulation speed of 100 KIPS.

smaller application representatives. Because of the repeated execution of regions with

similar behavior, these techniques have been shown to accurately predict the original

workload behavior, and significantly reduce the simulation time needed [2, 20].

Apart from sampling, researchers have developed a number of complementary techniques

to reduce the overall amount of work required to simulate applications in detail, including

input size reduction [110] and benchmark synthesis [111]. While each technique presents

its benefits and challenges, sampling has emerged as a straightforward way to maintain

the original application characteristics and accurately extrapolate performance while

reducing the overall simulation burden.

With the increasing number of cores in modern processors, multi-threaded applications

can exploit a large amount of compute through task and loop parallelism. Simulating

these large, multi-threaded applications is extremely difficult, even on modern simula-

tors. Ultra-fast FPGA-based simulators [50] require detailed implementations and are

capacity-limited, preventing the simulation of large processors and large parallel systems,

3.1 Introduction 25

and fast software-based simulators [14, 93] still require a significant amount of time to

run an entire large, parallel workload to completion. Multi-threaded applications are

inherently difficult to analyze [73] as the threads can go to sleep at any time, threads

interfere with one another, and complex behavior emerges from regular application pa-

rameters like misalignment of threads to cores and unequal cache distribution.

Some of the earliest multi-threaded sampling solutions prove effective when the threads

themselves do not synchronize but can still interact with the memory hierarchy [30].

Any amount of synchronization requires thread progress to be measured in time to

track the amount of progress or parallelism in the application. The move towards a

time-based sampling methodology has led to the development of sampling techniques

for synchronizing multi-threaded applications. These techniques [32, 33] describe one of

the first generic sampling solutions for multi-threaded applications. However, the over-

all simulation speed is still bound to the total application length, which dominates the

simulation time of this methodology. Later proposals, in the form of application and

synchronization-specific methodologies [34, 43, 44], exceeded the performance of time-

based sampling and allowed for the simulation complexity to be bound to application

diversity, not application length. Unfortunately, these methodologies are tied to specific

application characteristics (the use of barriers [34] or tasks [43, 44]), and therefore do not

represent a general sampling solution that covers all application types. In fact, as Fig-

ure 3.1 demonstrates, both time-based sampling, and BarrierPoint (when inter-barrier

regions exist to simulate), approach a simulation time of one year to simulate the

sample when considering large, multi-threaded applications. Clearly, current method-

ologies are insufficient for simulating the largest, most realistic benchmarks like the

multi-threaded SPEC CPU2017 with the ref input set.

In this work, we aim to overcome the limitations of these prior works to enable synchronization-

agnostic application sampling for multi-threaded workloads while still scaling the amount

26 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

of work based on the representative nature of the application. To accomplish this goal, we

present the LoopPoint methodology that reduces an application to a few representative

regions, called looppoints, by taking into account several key factors like understanding

(1) where to simulate which requires (1a) an accurate analysis methodology that can

provide for reproducible analysis, and (1b) using a precise clustering mechanism that

partitions the regions to reduce the workload into its representative components. In

addition, our methodology presents (2) how to simulate the regions to allow the appli-

cation to take advantage of the underlying hardware, while not constraining execution

to a deterministic path [72] that might not exhibit true application behavior.

We make the following contributions in this work:

1. A representative simulation region selection methodology called LoopPoint suit-

able for the performance projection of multi-threaded programs (more details on

supported workloads in Section 3.3.11) based on using loop iterations as the unit

of work.

2. A technique to enable multi-threaded sampled simulation by filtering out spin-loops

during region identification, selecting repeatable loop boundaries of a practical

region size, and accurately extrapolating performance characteristics.

3. The development of a process to record a constrained application checkpoint for

accurate analysis and subsequently simulate the workload’s unconstrained behavior

during simulation.

4. A comprehensive evaluation of the LoopPoint methodology to demonstrate the

potential for speedup while maintaining accuracy using the OpenMP-based multi-

threaded subset of SPEC CPU2017 benchmark suite and NAS Parallel Benchmarks

(NPB).

In the following sections of this work, we first provide an overview the LoopPoint method-

3.2 Fast and Generic Multi-threaded Simulation Requirements 27

ology, results, and evaluation. In Section 3.2, we detail each of the components needed

for a fast, accurate, and generic multi-threaded sampled simulation. In Section 3.3, we

describe the LoopPoint methodology. We then detail the experimental infrastructure

and setup in Section 3.4, evaluate the LoopPoint methodology in Section 3.5. Finally,

we compare to related work (Section 3.6) and conclude the chapter (Section 3.7).

3.2 Fast and Generic Multi-threaded Simulation Require-

ments

Time-based sampling methodologies [32, 33] present the first workable solution to sample

generic multi-threaded applications. However, the speed-ups achieved (up to 5.8×) using

these methodologies are limited by the need to visit the entire application. To achieve

high speed-up while maintaining accuracy during multi-threaded workload sampling,

we need to consider the inherent application regularity and the amount of parallelism

present in the workload at any particular time. We need to define a unit-of-work that is

suitable to exploit the application regularity and, at the same time, is applicable across

a variety application and synchronization types. The key is the ability to (1) recognize

representative regions in a generic way across multi-threaded workload types, and to

(2) classify these regions considering application parallelism. To this end, we present a

new application sampling methodology called LoopPoint that (a) uses loop iterations as

the main unit of work, (b) utilizes constrained pinballs [77] (user-level checkpoints that

allow for reproducible analysis), (c) employs heuristics to remove synchronization during

analysis, but use them during simulation, and (d) performs unconstrained simulation

of the selected simulation regions allowing for fast and accurate workload evaluation.

Figure 3.2 shows the overall methodology.

Sampling methodologies that rely on instruction counting can perform poorly when

dealing with multi-threaded applications [31]. We demonstrate this by performing a

28 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

W
he

re
 to

 si
m

ul
at

e

Program
binary, inputs

2. Region Analysis
and Clustering

1. Loop-based
Profiling

Looppoints
Specification

4. (Warmup +)
Detailed Region

Simulation

3. Checkpoint
Generation

Checkpoint-driven

Binary-driven

H
ow

 to
 si
m
ul
at
e

5. Performance
Extrapolation

DCFG
Generation

Application
Execution
Recording

Synchronization
Filtering

Slice Generation
(PC, count)

Vector
Concatenation

Flow-control

Region
Checkpoints

Per-thread
Feature
Vectors

Figure 3.2: LoopPoint-based region selection and simulation for multi-threaded work-
loads. The workload is captured for analysis and region selection based on loop infor-
mation. The representative regions are simulated using a checkpoint-driven method as
well as by binary-driven unconstrained way allowing for extrapolation of performance
and other metrics of interest.

naive adaptation of Simpoint [20] for multi-threaded applications of SPEC CPU2017

that use eight threads. With this methodology, the average error in predicting the

runtime of the applications using active wait policy is 25% and as high as 68.44%,

whereas errors for the passive wait policy are as high as 20%.

Previous works like the BarrierPoint [34] methodology use inter-barrier regions as the

unit of work, whereas the TaskPoint [43] methodology applies only to task-based applica-

tions that use task instances as the unit of work. Unfortunately, BarrierPoint, when used

to sample large applications with a small number of barriers, can yield negligible simu-

lation speed-ups. This can be common, especially while sampling realistic workloads for

which the length of inter-barrier regions is a bottleneck. BarrierPoint, therefore, is not

practical for such workloads. Figure 3.1 shows how the instruction count (and there-

fore simulation time) of an inter-barrier region grows with larger input sets of SPEC

CPU2017 and NAS Parallel Benchmarks (NPB) [112] with eight threads. BarrierPoint

3.2 Fast and Generic Multi-threaded Simulation Requirements 29

works well for NPB with the A input size [34], but as the input sizes grow, for classes

C, D and E, inter-barrier regions become so large that it becomes impractical to use

BarrierPoint for those input sets. The same is the case with SPEC CPU2017 using ref

inputs.

Instead, LoopPoint uses loop iterations as the unit of work with the goal to apply to

generic multi-threaded programs. The idea of using loop iterations as slices for single-

threaded programs was proposed in [26]. With loop entries as slice boundaries, the

simulation regions can then be specified using a (PC, count) pair for the starting and

ending loop entry for each simulation region. By monitoring the amount of work, as

represented by loops, and not instructions or barriers, we can isolate multi-threaded

application representatives and understand the amount of global work completed. For

multi-threaded programs, one additional constraint is that the loop entries that are

chosen to start and end slices should be those doing meaningful work. Automatically

separating loops doing real work from synchronization can be a daunting task. How-

ever, we can use application knowledge or synchronization mechanism details to filter

out synchronization loops. For example, the Intel OpenMP run-time uses functions in

the libiomp5.so library for synchronization; hence loops from that library should not

be counted towards work done while profiling the application. Alternatively, if the syn-

chronization routines are known before-hand, the code from such routines can likewise

be avoided.

Where to simulate. As detailed cycle-accurate simulation can be time-consuming,

architects and researchers often use sampling to decide where to simulate by choosing

small portions or regions of long-running program executions for simulation. Sampling

requires (a) choosing the regions so that they are representative of the whole program

behavior and (b) projecting the whole-program performance based on the simulation

results of the selected regions. SimPoint [20] is a popular simulation region selection

30 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

approach. It works by dividing the program execution into smaller slices and collecting

an execution signature for each slice. K-means clustering is used to determine phases

from slice signatures. One representative per cluster is then chosen with the weight

corresponding to the cluster size. Since these representatives are designed to be micro-

architecture independent, the signature collected for each slice needs to be dependent

only on the program execution and not based on any micro-architecture dependent

metric. Typical signatures used include the BBV (Basic Block Vector) which contains

execution counts of various basic blocks (single-entry/exit code blocks). How to slice a

program’s execution into regions is an important decision. For single-threaded programs,

using a fixed instruction count called the slice size has been shown to work well [20].

In our work, we keep slices of approximately similar sizes demarcated by loop entries.

The region selection is based on the replay of a previously recorded whole-program

execution as a pinball. According to the micro-architecture of the recording machine,

the synchronization seen there can be different from the synchronization seen during

unconstrained simulation. We, therefore, augment our region selection methodology to

make a selection only on the real computation or work done. The heuristics described

earlier to avoid synchronization loop entries as region boundaries can also be used to

filter out (to execute but not count) synchronization code during profiling for region

selection.

How to simulate. A critical decision that the simulator developers need to make is

how to simulate, i.e., how to connect the application in consideration to a simulator.

The most commonly used methods are (1) binary-driven where a program binary is

executed during simulation feeding instructions to the simulator, (2) checkpoint-driven

where a snapshot of selected region memory/register state and a list of injection events

are used to drive the simulator, and (3) trace-driven where an instruction-by-instruction

recorded state is fed to a timing-only simulator. The choice of how to simulate depends

on several factors, such as ease of deployment, cost of generation, and flexibility of the

3.3 The LoopPoint Methodology 31

evaluation. For this work, we use both binary-driven and checkpoint-driven simulations

for our evaluation, although the implementation itself is generic and supports any of

these simulation methods. Checkpoints are easier to share among multiple users than

program binaries whose execution might require complex setup and input availability.

We propose to capture regions selected by LoopPoint as pinball [3] checkpoints so they

can be used to drive PinPlay-based simulators.

By default, PinPlay supports constrained replay of pinballs where the shared memory

accesses among threads are repeated in the order captured during recording. Simu-

lation based on such constrained replay will repeat the thread ordering based on the

micro-architecture of the machine on which the pinballs were generated. However, we

ideally want the target, simulated micro-architecture to decide the thread behavior dur-

ing simulation. To achieve that, we also use binary-driven simulation of the regions

selected by LoopPoint using stable (PC, count)-based boundaries defining those regions.

Therefore, the simulation proceeds as though the region was executed natively on the

simulated micro-architecture. Another technique to achieve unconstrained simulation

using pinballs is to convert them to executable checkpoints, called ELFies [47].

3.3 The LoopPoint Methodology

In this section, we explain the different parts of the proposed methodology, LoopPoint.

We start with an upfront analysis of the application to determine its behavior and to

identify loops, as shown in Figure 3.2. This is a one-time step and we use the informa-

tion collected here for clustering regions to choose representatives. The representative

regions are then simulated with sufficient warmup. The simulation results enable us to

reconstruct the overall application performance.

32 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.3.1 Selecting a Unit of Work

Multi-threaded applications may use different execution paths with different runs, and

therefore the use of IPC to evaluate the performance of multi-threaded workloads is

infeasible [31]. LoopPoint proposes a strategy that identifies regions of interest in terms

of work done by each thread. We define the unit of work as the actual amount of

compute done within a slice of an application. For an unmodified application with the

same input set, the unit of work chosen needs to remain the same for each application

execution regardless of the properties of the underlying hardware, although the number

of instructions executed may vary each time. The generality of the chosen unit of work

is crucial for application sampling as this determines the amount of simulation speedup

achieved. We would want the chosen unit of work to be large in number within the

program, to be one that repeats itself, and to remain unchanged over multiple executions.

We consider the number of loop iterations as the unit of work done. Program loops are

ubiquitous across application domains and the number of iterations of any particular

loop doing real computation as opposed to synchronization can remain constant over

multiple executions for an unmodified application and for a fixed input size. In a multi-

threaded environment, we consider loop execution, ignoring spin-loops (one form of

active synchronization), to compute the amount of work done. Spin-loops contribute to

the IPC of the application and consume CPU cycles, however, they do not contribute to

the meaningful work done by the particular thread (waiting cannot be considered work

completed). This is the key to LoopPoint methodology we present here.

3.3.2 Understanding Parallelism

One of the fundamental requirements of a multi-threaded sampling methodology is the

ability to understand how the parallelism of an application changes, over time, and to

use that information to drive the representative selection process. In fact, understanding

3.3 The LoopPoint Methodology 33

parallelism in a generic way is one of the main insights of this work. To accomplish this,

we continue to use worker loop instructions as the key metric for work completed.

Program phase behavior is an important aspect to consider while sampling applications.

A phase is a set of slices in a program’s execution that shows similar behavior, regardless

of where they appear within the execution. The locations in source code whose execu-

tions correlate to a phase change in the application are called software phase markers

[26]. The software phase markers can accurately identify the phase changes that oc-

cur in an application execution irrespective of the underlying microarchitecture. These

are execution points that can act as simulation region boundaries that are invariant

across multiple application executions. We identify source-level program loops as possi-

ble checkpoints which form the basic building blocks of a program.

Capturing BBVs is an essential way to understand the fingerprint of an application

execution region. We consider the slice-size to be approximately N × 100 million global

(all-threads) instructions that align with loop boundaries for a N -threaded application.

For example, we collect BBVs in intervals of approximately 800 million instructions for

an 8-threaded application. We ignore the instructions executed in spin-loops or any other

synchronization code while collecting the BBVs. The end of a region specified by a BBV

is the next loop entry once the instruction count target is achieved. Although this can

be implemented in several ways (as described in [26]), we do not currently differentiate

between inner and outer loop markers and do not restrict specific threads to indicate

loop boundaries. The loop entries that serve as region markers need to be worker loops

and not spin-loops. We assume that the spin-loops are found only in the synchronization

library (for example, OpenMP), and therefore, we end a region only at a loop entry that

is present in the main image of the application. The per-region BBVs of each thread

are concatenated into a longer, global BBV that represents a multi-threaded region.

This guides the clustering phase when there are regions that exhibit non-homogeneous

34 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

thread behavior. Figure 3.3 shows the ratio of the number of instructions executed by

each thread as the application progresses. The application 657.xz_s.2, as an example,

clearly exhibits a non-homogeneous thread behavior.

There are a number of reasons to maintain sufficiently large per-thread slices (approx-

imately 100 million instructions). If a smaller slice-size is chosen, a large number of

simulation points may be required, and such regions are highly sensitive to warmup

and aliasing issues [32]. At the same time, we also need to make sure that there are

enough intervals in the application for the clustering algorithm to work efficiently [23].

Prior analyses [20] on single-threaded applications showed that fixed size (of 100 million

instructions) intervals of execution can be used to identify phase behavior. Using vary-

ing length intervals [25] corresponding to the application periodicity can help mark the

phases more accurately. In LoopPoint, we use approximately similar interval lengths,

however, the methodology can also be used with varying length intervals.

While we profile an application for BBVs or any feature vectors, we make sure that all

threads in the application make the same amount of forward progress during analysis.

This is to stabilize the collected profile for any thread imbalance that is caused by

external events on the host processor (and is unrelated to the analysis environment).

We call this method to enforce equal progress between threads flow-control.

3.3.3 Marking Region Boundaries

Every region in an application has its boundaries at a loop entry. The regions need to

be represented so that it is repeatable across multiple executions of the application. In

the case of single-threaded applications, instruction count can be used to define regions

reliably. However, for multi-threaded applications, this does not hold. We describe

the start and end of each region as an ordered-pair (PC, count), where the PC is the

address of the corresponding region boundary marker instruction and the count is the

3.3 The LoopPoint Methodology 35

0 50 100 150 200 250 300 350
global slice number

0.0

0.2

0.4

0.6

0.8

1.0

th
re

ad
 ic

ou
nt

 ra
tio

pop2_s.1 active
thread0
thread1

thread2
thread3

thread4
thread5

thread6
thread7

(a)

0 10 20 30 40
global slice number

0.0

0.2

0.4

0.6

0.8

1.0

th
re

ad
 ic

ou
nt

 ra
tio

xz_s.2 active
thread0 thread1 thread2 thread3

(b)

Figure 3.3: The above graphs show the variation in the share of the per-thread in-
struction count on a per-slice (with a slice size of 800M global instructions) basis as the
application progresses. If we consider a multi-threaded region, the basic-block share is
different for all threads. This is subtly captured by concatenating the per-thread execu-
tion fingerprints.

execution count of the marker at the start and end of the region. The value of count for

a particular region size is invariant across multiple executions, which represents the unit

of work done. Hence, these markers remain valid simulation points even in the presence

of spin-loops.

3.3.4 Identifying Loops using DCFG

Loops are often found in typical applications, and the number of loop iterations can

remain constant for an unmodified application for a particular input over multiple exe-

cutions. This is the key to our generic methodology which is explained below in detail.

We employ a Dynamic Control-Flow Graph (DCFG) to identify the regions that repre-

sent loops. A DCFG is similar to a classical control-flow graph with a primary difference:

Each edge of a DCFG is augmented with a trip count to indicate the number of times the

edge was traversed. The source code locations whose executions correlate with a phase

change are called software phase markers [26]. The software phase markers identify the

36 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

638.imagick_s/magick/morphology.c
2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2843 #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)
2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)
2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)
2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {
3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……
3034 } /* u */

……
3037 } /* v */

3342 } /* x */
3357 } /* y */

……

loop line# #visits #iterations
u 3022 831,090 59,007,160
v 3021 2,958 831,086
x 2886 7 2,958
y 2846 2 8
p 2843 0* 2

59007160

831086
2958

8
2

(a)

(b)

Representative Region

#iterations

0x54099f:538822582

0x54099f:558252036
(a)

0 500M 1000M 1500M 2000M 2500M 3000M
Time (cycles)

0

1

2

3

IP
C

0 5M 10M 15M 20M 25M
Time (cycles)

0

1

2

3

IP
C

(0
x5

40
99

f:
53

88
22

58
2)

(0
x5

40
99

f:
55

82
52

03
6)

(b)

Figure 3.4: An example of a representative region identified by LoopPoint. (3.4a)
The numbers represent iterations of the corresponding loops that form the 8-threaded
region. The start point and end point of the chosen region are at line 3022, the entry
point of loop u. (3.4b) The top graph shows the variation of IPC over time for the full
application run, while the bottom graph shows that of the chosen region. The (PC,
count) boundaries are marked inside the IPC graph of the region.

phase changes that occur in an application execution irrespective of the underlying mi-

croarchitecture. These phase markers need to repeat in number and order across multiple

program executions so that they can meaningfully act as simulation region boundaries.

We choose headers of loops that are in the main image of the program, assuming that the

synchronization loops are in the libraries. The number of iterations of synchronization

loops may vary across different program executions. The DCFG of the whole program

execution is instrumented for loop header instructions to identify a subset of loops from

the main image. Loop header instructions are instrumented to emit Basic Block Vectors

(BBVs) after slice-size number of instructions. Figure 3.4 shows a region identified using

DCFG. The region is contained in the 638.imagick_s.1 application with train inputs

and eight threads.

3.3 The LoopPoint Methodology 37

3.3.5 Clustering Representative Regions

Once an application is profiled, and region boundaries marked, we will have a collection

of variable-length regions. These BBVs (with spin-loops filtered) represent the state

of the application and also allow one to understand the amount of work accomplished

by each thread. For example, in regions where a single thread is active, the thread

will no longer interfere with memory requests from other threads, potentially leading

to faster single-thread execution. However, a fully populated system with N threads

would continue to interfere, potentially slowing overall progress. The amount of time

the application executes becomes the combination of the amount of work executed in

one quantum, together with the runtime attributed to that quantum. These quanta can

then be clustered in order to identify similar work, and therefore identify similar runtime

behavior. Although BBVs are used in this work, other feature vector information [34]

can be concatenated on a per-thread basis and can be used in this methodology.

The BBVs are projected down to 100 dimensions by random linear projection to bring

down the computing requirements for the clustering algorithm. We use the K-means

clustering technique [113] along with a BIC goodness criteria [114] to select clustering in

a method similar to previous work [20]. The K-means algorithm requires the selection of

the maximum number of clusters that we can expect, maxK, for which we use maxK =

50.

Because we use BBV data that represents both parallelism and work executed, we can

now cluster the regions and use the resulting clusters for workload extrapolation. We

choose the BBV that is closest to the centroid of each cluster to be the representative

of the cluster. We generate the region that represents each cluster from the original

application based on the region boundaries and call them looppoints.

38 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.3.6 Warmup

For high performance, we will want to simulate each looppoint separately, in parallel,

given enough resources. For accurate results, the microarchitectural state needs to be

warmed up at the start of the simulation of each region. There are several techniques

[5, 90, 115] proposed to warmup cache state. For binary-driven simulation, we warm up

each region from the start of the application to minimize warmup error. Likewise, for

checkpoint-driven constrained simulation, we use a sufficiently large warmup region pre-

ceding the simulation region. Determining the appropriate amount of warmup required

for each representative region falls outside the scope of this work.

3.3.7 Runtime Extrapolation

Once the representatives are simulated, we can estimate the overall application execution

time through the use of weight-based extrapolation. In this methodology, we use the

percentage of work that this region represents, based on the instruction count of the

entire collection of representatives that have been clustered together relative to the total

amount of work done in the original application (quantum multiplier), to extrapolate

the final runtime performance. The instructions that contribute to spin-loops are not

considered here. The final step of this methodology uses the simulation results of these

identified representatives, along with the multiplier, to reconstruct the overall workload

runtime.

Our runtime extrapolation uses the below mentioned formula considering N looppoints

identified as rep1 to repN :

total runtime =
repN∑

i=rep1

runtimei × multiplieri (3.1)

The multiplier of a looppoint is the ratio of the sum of the filtered instruction counts

3.3 The LoopPoint Methodology 39

from all of the regions that are represented by the looppoint to the filtered instruction

count of that looppoint.

multiplierj =
∑m

i=0 inscounti

inscountj
(3.2)

where m is the number of regions that are represented by the jth looppoint.

We evaluate our region selection methodology by comparing the extrapolated runtime

based on region simulation with the actual runtime based on the whole-application sim-

ulation to compute the prediction error. We demonstrate runtime extrapolation using

the above formula, but this methodology can be used for any event of interest, such as

cache and branch miss counts, for example.

3.3.8 Reproducible Application Execution for Accurate Analysis

The execution path of a multi-threaded application can vary from run to run due to

several factors. One requirement to use this methodology is the ability to analyze a

multi-threaded application in a repeatable way. Traditional execution environments do

not support this type of execution to allow for reliable, reproducible execution. We

leverage Intel’s Pin [116] and Pinplay [77] tools to generate reproducible, constrained,

multi-threaded execution snapshots, called pinballs, to allow for repeatable analysis.

Pinballs are more advanced than a trace file in that they contain a snapshot of the

execution state of an application (registers and memory). By replaying the Pinball, we

can analyze the properties of an application to collect the microarchitecture-independent

execution signatures of the application.

3.3.9 Putting it All Together

Together, the combination of reproducible replay of applications, along with the iden-

tification and clustering of workload characteristics, allows us to build an end-to-end

methodology to identify workload representatives for performance extrapolation. Previ-

40 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

ous works [34] have shown that extrapolation in this manner does apply to runtime, as

well as other metrics of interest. The insights with respect to the identification of appli-

cation parallelism, as well as the constrained, reproducible execution of the workloads,

allow us to analyze, cluster, and extrapolate multi-threaded workloads across a number

of synchronization types.

3.3.10 Speed-up Potential

One of the most significant benefits of a checkpoint-based methodology is the ability

to substantially reduce the amount of work that needs to be simulated to estimate the

entire application performance. Simulator performance relates directly to the required

length and number of regions to simulate. In addition, checkpoints can be simulated in

parallel, with enough resources available, speeding time-to-results significantly.

3.3.11 Workload Applicability

LoopPoint targets statically scheduled multi-threaded workloads regardless of the syn-

chronization mechanisms used in order to simulate them in a faster way that was not

possible before. The methodology is particularly effective for loop-intensive applica-

tions. For other workload types or scenarios involving aggressive loop optimizations, the

heuristic can be adapted to utilize function calls or database transactions as the unit of

work. Dynamically scheduled multi-threaded applications would require a different type

of methodology for sampling due to their non-deterministic nature. This is because such

applications can interact with other threads in ways that were not seen in the initial

execution of the application, potentially leading to incorrect extrapolations.

Checkpoint-based methodologies, such as BarrierPoint, necessitate prior application

analysis to determine workload phases. However, these phases are input-dependent

and are reusable only when the application and corresponding libraries exhibit consis-

tent behavior. We address the problem of workload imbalance among the threads (a

3.4 Experimental Setup 41

heterogeneous workload) by keeping per-thread information intact while clustering the

individual regions. Like other checkpoint-based methodologies, we also assume that

the hardware configuration is known up-front. This configuration is free from any run-

time-dependent configuration changes or unexpected events that trigger a configuration

change while the application is running. An example of a dynamic event is thermal

throttling resulting in a dynamic voltage and frequency scaling (DVFS) event, which

can affect the application performance and is runtime- and hardware-dependent. Due to

the microarchitecture-dependent behavior of vectorized code (SIMD instructions), the

application profile and identified clusters may vary across different microarchitectures.

To address this, SIMD instructions may need to be treated as continuous instruction

sets within the BBV.

3.4 Experimental Setup

In this section, we describe the setup on which we conducted our experiments to evaluate

our generic multi-threaded sampling methodology.

3.4.1 Simulation Infrastructure

In this work, we use Sniper multicore simulation infrastructure [14] (version 7.4) with

modifications to support PC-based simulation region specification. We configured Sniper

to model a multicore out-of-order processor resembling the Intel Gainestown microarchi-

tecture using an 8 or 16-core processor model to simulate 8 or 16-threaded (respectively)

applications. The simulated system characteristics that we use are detailed in Table 3.1.

42 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

Table 3.1: The primary characteristics of the simulated system.

Component Features

Processor 8 & 16 cores, Gainestown-like microarch.
Core 2.66 GHz, 128 entry ROB
Branch predictor Pentium M
L1-I cache 32K, 4-way, LRU
L1-D cache 32K, 8-way, LRU
L2 cache 256K, 8-way, LRU
L3 cache 8M, 16-way, LRU

Table 3.2: SPEC CPU2017 speed application attributes. F=Fortran, KLOC=thousand
lines of code. From [1]

Application Lang. KLOC Application Area

603.bwaves F 1 Explosion modeling
607.cactuBSSN F, C++ 257 Physics: relativity
619.lbm C 1 Fluid dynamics
621.wrf F, C 991 Weather forecasting
627.cam4 F, C 407 Atmosphere modeling
628.pop2 F, C 338 Wide-scale ocean modeling
638.imagick C 259 Image manipulation
644.nab C 24 Molecular dynamics
649.fotonik3d F 14 Comp. Electromagnetics
654.roms F 210 Regional ocean modeling

3.4.2 Workloads

In order to evaluate the proposed methodology, we consider the SPEC CPU2017 [117]

benchmark suite. SPEC CPU2017 is available in two different versions depending on

the evaluation purpose: rate and speed [118]. The rate version is used to estimate the

throughput of the underlying system whereas the speed version is used to estimate the

runtime of the benchmark on the system. Unlike prior versions of SPEC benchmarks,

CPU2017 includes a set of synchronizing multi-threaded programs that share memory

consisting of OpenMP-compatible multi-threaded applications. We use the speed version

of SPEC CPU2017 with train inputs and eight threads (See Table 3.2 for application

descriptions) for our evaluation. The train input set is used so as to keep the full

program simulation time to a reasonable length. As the detailed simulation of the full

3.4 Experimental Setup 43

SPEC CPU2017 applications with ref inputs is not practical, computing the sampling

error is also not feasible. Therefore, we utilize the ref inputs to estimate the potential

speedup of the methodology in the chapter. The benchmarks we use include OpenMP

directives, with a summary of the primitives used described in (Table 3.3).

Table 3.3: SPEC CPU2017 speed synchronization primitives used. sta4=static for,
dyn4=dynamic for, bar=barrier, ma=master, si=single, red=reduction, at=atomic,
lck=lock.

Application sta4 dyn4 bar ma si red at lck

603.bwaves Y Y Y
607.cactuBSSN Y Y Y Y Y
619.lbm Y
621.wrf Y Y
627.cam4 Y Y Y Y
628.pop2 Y Y Y
638.imagick Y Y Y Y Y
644.nab Y Y Y Y
649.fotonik3d Y
654.roms Y

All SPEC CPU2017 workloads except 657.xz_s runs are 8-threaded. 657.xz_s.2 runs

with 4-threads whereas 657.xz_s.1 runs as a single-threaded application.

All the benchmarks in the SPEC CPU2017 benchmark suite are compiled using the Intel

compiler toolchain (Intel Parallel Studio XE, version 2019 Update 2) with optimizations

enabled (-O2) and debug information available for binary to source-level mapping, and

built for the 64-bit x86 instruction-set architecture.

We also use NAS Parallel Benchmarks (NPB) [119, 120] version 3.3 with OpenMP based

parallelization [121] that use class C inputs. We evaluate all benchmarks in the suite

with both 8 and 16 threads, but do not evaluate the npb-dc (data cube) benchmark

because of the large amount of data generated by that application. These benchmarks

are compiled using GCC 5.5 for applications in C and GFortran for Fortran applications

with -O3 optimizations for the x86-64 architecture.

44 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

We consider both active and passive wait policies for thread synchronization of the

SPEC CPU2017 OpenMP applications. We use the passive OpenMP wait policy to

configure NPB benchmarks. In passive wait policy, the threads do not spin while waiting

for other threads. Meanwhile in the case of active wait policy, the threads remain active

and they consume processor cycles while waiting by executing spin-loops. The use of

(PC, count) region specification can accurately represent a region over multiple runs

even in the presence of spin-loops, which is not possible if the region specification is

based on global or per-thread instruction counts.

For each benchmark, we record the execution path of the whole application and keep it

as a pinball so that it can be replayed in both constrained and unconstrained mode later

on. We have developed Pintools [116] to generate BBVs of the regions which are fed to

Simpoint for clustering the regions to identify the representative regions. We also have

employed Pintools to restrict the forward progress of all the threads in a well balanced

way thereby avoiding the chances of recording a skewed trace because of CPU load

imbalances. The representative regions identified are simulated in parallel. We evaluate

the runtime accuracy of the chosen representatives by simulating in constrained and

unconstrained modes.

3.4.3 Constrained Execution Infrastructure

We use Intel’s PinPlay [77] infrastructure that provides tools to record and replay ar-

bitrary regions of a program execution. The recorder captures the execution of an

application in a set of files collectively called a pinball [3] which can later be replayed on

any machine since pinballs are portable. A pinball consists of a memory file (.text), the

architecture register values at the beginning of the execution region in per-thread regis-

ter files (.reg), a set of memory and register values in per-thread injection files (.sel),

and a subset of shared-memory dependencies among various threads in per-thread de-

pendency files (.race). A pinball once captured is self-contained, which means that

3.4 Experimental Setup 45

both the application binary and inputs are not needed during replay of the pinball.

The replayer loads the initial memory and register state and starts executing the restored

program region like a regularly loaded binary. System calls are skipped and their side-

effects are injected. Shared-memory access in all threads are monitored and the threads

are artificially delayed as needed to enforce the access order as recorded in the pinball.

Finally, the replay is ended gracefully when the exit condition is met. Since system calls

are skipped during replay, a pinball can be replayed across different operating systems.

3.4.4 DCFG and Basic Blocks

The Dynamic Control Flow Graph (DCFG) is created by executing the program via a

pin-tool enabled with the DCFG library [122, 123]. Internally, the pin-tool hooks the

control-flow instructions and records a count of each of the resulting edges throughout

the execution of the workload on a per-thread basis. At the end of the execution, fall-

through edges are created to ensure non-overlapping basic blocks. These basic blocks are

guaranteed to have only one entry and one exit point and not overlap with each other.

In this way, they differ from the basic block structures in Pin, which do not have these

guarantees. The resulting basic blocks and the edges that connect them thus create

a connected graph. From this graph, routine boundaries are identified based on call

edges and heuristics to handle non-standard routines that are sometimes found in non-

compiled code. Inside the sub-graph of each routine, the immediate dominators of each

node are found. Loops are then identified using the immediate dominator relationships.

The graph, including the identified routines and loops are recorded.

3.4.5 Unconstrained Replay

PinPlay’s replayer enforces determinism among the threads by injecting recorded system

call side-effects and enforcing the recorded shared memory access thread order. We use

this mode when analyzing the workload (collecting BBVs and DCFGs to be used in the

46 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

clustering phase), to ensure different steps of the profiling methodology have a consistent

view of the program’s execution flow (as recorded during the initial whole-program

recording). However, during performance simulation, we want the timing model to

control thread progress and synchronization, not PinPlay as this can introduce artificial

thread stalls1.

3.4.6 Synchronization Handling

OpenMP active runs, enabled by setting the environment variable OMP_WAIT_POL-

ICY to ACTIVE [125], have threads busy-waiting at user-level (as opposed to using fu-

tex() in the passive runs). We replay a pinball that was recorded earlier for reproducible

analysis for the generation of BBVs. If we directly use the recording, we encounter

the busy-waiting code that was originally executed by the application. However, the

busy-waiting code can differ if the application is executed another time with different

conditions. While busy-waiting consumes processor cycles, they do not contribute to the

real work done by the program. Therefore, we ignore busy-waiting during BBV profil-

ing, yet include it during simulation. Identifying busy-waiting code automatically [126]

can be a challenge and is yet another research problem. In our methodology, we ignore

the entire code from the relevant synchronization library (libiomp5.so in our case).

Note that this idea can easily be extended to other compilers and threading libraries.

For example, in the case of applications using pthread synchronization, we can ignore

the code from the libpthread library. The filtered instruction count is up to 40% (for

657.xz_s.2) fewer than the original instruction count for the active runs.
1See [124] for a methodology that uses constrained replay during multi-threaded performance simu-

lation, and which can, in limited cases, work around the artificial stalls.

3.5 Evaluation 47

3.5 Evaluation

In this section, we present the evaluation results of LoopPoint methodology. We analyse

the effect of various model parameters that make up the methodology. We also evaluate

the accuracy and the speedup achieved using LoopPoint.

3.5.1 Accuracy

We show the accuracy of LoopPoint methodology by comparing the predicted runtime

and the actual runtime of the application. The predicted runtime is calculated by con-

sidering the performance of all the representative regions as mentioned in Section 3.3.7.

The representative regions are augmented with a warmup region so that the microar-

chitectural state is warmed when the detailed region starts simulating. The prediction

error of our methodology is the percentage difference in the simulation performance of

the whole application and the extrapolated performance making use of the performance

of all the representative regions identified for the application.

3.5.1.1 Constrained and unconstrained simulations

The LoopPoint methodology is tested for applications using the active and passive

wait policies, and the simulation results are given here. Synchronizing multi-threaded

applications with active wait policy uses spinloops to synchronize the threads. Sam-

pling such an application can be considered a difficult problem to solve. We ignore the

instructions that contribute to spin-loops during BBV generation and clustering phases

as described in Section 3.4.6.

We perform binary-driven unconstrained simulations of the whole application as well as

the representatives to measure the performance. In order to mark the region bound-

aries using (PC, count) correctly, we need to keep spin-loops away from being the region

boundaries, as mentioned earlier. We limit the region boundaries to be from the appli-

48 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

cation code and not from any of the library code. Here, we make an assumption that

the synchronization code can only be present in the libraries.

The region checkpoints are generated as pinballs which can be used for constrained sim-

ulation. We assume a large enough warmup region added to the representative region

while generating the pinball checkpoint. However, using constrained simulation intro-

duces artificial thread delays and is therefore not reliable for performance extrapolation.

There are several ways to simulate these pinball checkpoints in an unconstrained way.

One such method is to convert them to ELF binaries, called ELFies, as discussed in a

prior work [47]. In this chapter, however, we are not evaluating ELFies. Instead, we

consider the region boundaries specified as (PC, count) to perform unconstrained sim-

ulation using the application binaries by providing perfect warmup before the start of

detailed simulation. One caveat that we want to mention is that not all region bound-

aries specified using (PC, count) can provide stable regions. For instance, applications

can have certain code blocks that are selectively executed with respect to the underlying

microarchitecture. Such code blocks or PCs cannot serve as stable (PC, count) region

boundaries. We assume that the users can choose the appropriate stable regions and

that, while straightforward to accomplish in an automated way, we leave that analysis

to future work.

Results when simulating constrained simulation can be misleading and can lead to high

errors. For example, we observe a runtime error for 657.xz_s.2 of up to 19.6% while

simulating in a constrained environment. One of the reasons that using constrained

simulation infrastructure can result in high error rates is that the simulation itself does

not properly mimic the real application run. Instead, the application tries to replicate the

behavior that was recorded previously on a specific machine. For instance, constrained

execution forces spin-loops to be replayed, even though this would not occur in a real

execution. This introduces high error for applications, like 657.xz_s.2, that have fewer

3.5 Evaluation 49

synchronization points compared to other applications in the SPEC CPU2017 benchmark

suite and, therefore, can see high variability from run to run.

The runtime prediction results (Figure 3.5a) using the unconstrained simulation of ac-

tive applications yield an average absolute error of just 2.33%, whereas that of passive

applications is 2.23%. These error rates are comparable to previous sampling method-

ologies [34].

The looppoints identified are representative of the application across microarchitectural

configurations. Our up-front analysis is solely based on architecture-level details, not

microarchitectural settings or simulation details. Figure 3.5b shows the error in predict-

ing the runtime of the same applications while simulated for an inorder core instead of

the out-of-order Gainestown-like core while keeping all other simulation parameters the

default as in Table 3.1. The graph clearly shows that looppoints can be portable across

microarchitectures.

60
3.b

wav
es-

s.1

60
3.b

wav
es-

s.2

60
7.c

act
uB

SSN-s.
1

61
9.l

bm
-s.

1

62
1.w

rf-
s.1

62
7.c

am
4-s

.1

62
8.p

op
2-s

.1

63
8.i

mag
ick

-s.
1

64
4.n

ab
-s.

1

64
4.n

ab
-s.

2

64
9.f

oto
nik

3d
-s.

1

65
4.r

om
s-s

.1

65
7.x

z-s
.1

65
7.x

z-s
.2

0
1
2
3
4
5
6
7
8

A
bs

. R
un

tim
e

Er
ro

r%

active passive

(a) Gainestown core

60
3.b

wav
es-

s.1

60
3.b

wav
es-

s.2

60
7.c

act
uB

SSN-s.
1

61
9.l

bm
-s.

1

62
1.w

rf-
s.1

62
7.c

am
4-s

.1

62
8.p

op
2-s

.1

63
8.i

mag
ick

-s.
1

64
4.n

ab
-s.

1

64
4.n

ab
-s.

2

64
9.f

oto
nik

3d
-s.

1

65
4.r

om
s-s

.1

65
7.x

z-s
.1

65
7.x

z-s
.2

0
1
2
3
4
5
6
7
8

A
bs

. R
un

tim
e

Er
ro

r%

active passive

(b) Inorder core

Figure 3.5: The runtime prediction errors of SPEC CPU2017 applications (train in-
puts) using active and passive wait policies that use eight threads for unconstrained
simulation. The y-axis represents the percent error in predicting the runtime of each of
the applications along the x-axis.

50 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.5.1.2 Varying the number of threads

We show that LoopPoint supports varying the number of application threads. Figure 3.6

shows the error rates while predicting the runtime of the NPB benchmarks. The ap-

plications are evaluated using eight and 16 threads. Note that the applications using a

different number of threads need to be profiled separately, as discussed in Section 3.3.

We observe that the average absolute error obtained is 2.87% for 8-threaded applications,

while for the 16-threaded applications, it is as low as 1.78%.

bt cg ep ft is lu mg sp ua
0

1

2

3

4

5

A
bs

. R
un

tim
e

Er
ro

r%

8 cores 16 cores

Figure 3.6: The runtime prediction results of the NPB benchmarks that use 8 and
16 threads. The applications use a passive wait policy and class C inputs. The y-axis
represents the error percentage in predicting the runtime of each of the applications on
the x-axis.

3.5.1.3 Comparison of other metrics

Figure 3.7 shows the performance prediction of several metrics while simulated on an

unconstrained environment for applications using active and passive wait policies.

LoopPoint can determine microarchitectural metrics like the number of cycles (Fig-

ure 3.7a), branch miss rate or MPKI (Figure 3.7b), the miss rates or MPKI of different

components in the memory hierarchy (Figure 3.7c), etc. In Figure 3.7b and Figure 3.7c,

we show the absolute differences in the metrics predicted, rather than the percentage

error in prediction, because those metrics have small absolute values and a small dif-

ference can result in a high percentage error. Previous research [24, 34] has presented

differences in a similar manner.

3.5 Evaluation 51

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

0
1
2
3
4
5
6
7

A
bs

. C
yc

le
s E

rr
or

%

active passive

(a) Number of Cycles

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

B
ra

nc
h

M
PK

I A
bs

. D
iff

.

1.
36

active passive

(b) Branch MPKI

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

0

1

2

3

4

5

6

L2
 M

PK
I A

bs
. D

iff
.

active passive

(c) L2 MPKI

Figure 3.7: The prediction errors of various metrics for SPEC CPU2017 benchmarks
using LoopPoint. The benchmarks use active and passive wait policies with train inputs
and eight threads and are simulated in realistic unconstrained mode.

3.5.2 Speedup

We consider speedup in two different ways: theoretical speedup and actual speedup.

Theoretical speedup is the reduction in the number of instructions (ignoring the instruc-

tions that contribute to spinloops) to be simulated in detail when using the LoopPoint

methodology. We also define the actual speedup as the reduction in the simulated run-

time using LoopPoint with respect to the simulated runtime of the whole application.

Serial speedup is the speedup achieved when all the representatives are simulated back-

to-back. It is the overall reduction in work given the serial execution of both the full and

52 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

reduced workload. Parallel speedup assumes sufficient parallel resources and evaluates

the speedup given the execution of all regions in parallel.

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

101

102

103

Sp
ee

du
p

Serial
Actual Theoretical

Parallel
Actual Theoretical

Figure 3.8: A comparison of theoretical and actual speedups achieved by LoopPoint.
The workload used is SPEC CPU2017 applications (active wait policy) using train inputs.

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

100

101

102

103

104

Sp
ee

du
p

LoopPoint
Serial Parallel

BarrierPoint
Serial Parallel

Figure 3.9: LoopPoint and BarrierPoint theoretical speedup for SPEC CPU2017 ap-
plications (passive wait policy) using ref inputs.

In Figures 3.8 and 3.9, we see both the serial and parallel speedups for these applications.

We obtain a maximum speedup of 801× for the applications with train inputs and

31,253× for the applications with ref inputs. The average serial speedup for applications

using train inputs and ref inputs are respectively 9× and 244× whereas the average

parallel speedup for the applications are 303× and 11,587× respectively for train and

3.5 Evaluation 53

ref inputs. This implies that a significant reduction of simulation resources is now

possible using the LoopPoint methodology, where simulations that would take months

to complete can now be finished in hours.

In Figure 3.9, we compare the theoretical simulation speedup using LoopPoint and Bar-

rierPoint for the benchmarks using ref inputs. Note that we do not plot the actual

speedup values using the ref inputs. We first validate our methodology with train

inputs, and by extension, we analyze and simulate ref input representatives to estimate

the performance of the larger application with confidence. Unfortunately, it is not pos-

sible to validate the error rates for applications with ref inputs because the full runs

take too long to simulate (a few months to years, as shown in Figure 3.1).

We observe that LoopPoint consistently achieves good speedup whereas BarrerPoint lags

behind for a number of applications. LoopPoint is able to reduce the application into

representative regions that can finish the simulation in a reasonable time. Additionally,

with the BarrierPoint methodology, there is no guarantee on the size of a representative

region. For example, the 8-threaded 638.imagick_s.1 benchmark has a very large

inter-barrier region (93.06 B instructions) that is comparable to the size of the entire

application (93.35 B instructions), defeating the purpose of sampling. However, there

are a few applications for which BarrierPoint outperforms LoopPoint. Those applications

have a large number of barriers, and the inter-barrier regions are typically smaller than

the LoopPoint regions. BarrierPoint is unsuitable to evaluate both of the 657.xz_s

applications as they do not contain barriers at all. Overall, a hybrid approach can be

chosen to speed up smaller applications, but LoopPoint provides the first methodology to

allow for generic sampling of applications that results both in a high simulation speedup

and accuracy.

We also show the speedup achieved using NPB applications in Figure 3.10. LoopPoint

achieves good speedups while the applications are evaluated for eight threads as well as

54 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

16 threads. The maximum parallel speedup achieved while evaluating the 8-threaded

applications is 2,503× with an average of 1,031×, whereas, for the 16-threaded applica-

tions, the maximum speedup achieved is 1,498× and an average of 606×. Do note that

NPB applications are less complex and more repetitive in nature than SPEC CPU2017

applications. Therefore, the error rates are lower, and the speedups achieved are larger

when compared to the train inputs of the SPEC CPU2017 suite.

bt cg ep ft is lu mg sp ua

101

102

103

Sp
ee

du
p

8 Core
Serial Parallel

16 Core
Serial Parallel

Figure 3.10: A comparison of actual speedups achieved by LoopPoint when the appli-
cations use 8 and 16 cores. Speedups are listed for the NPB suite using the C input set
and a passive wait policy.

3.6 Related Work

Before architects build new hardware designs, it is extremely useful to predict the hard-

ware design’s power, performance, and area (cost). Existing circuit-design tools are

able to simulate complex, modern applications on large, multi-core systems, but at the

cost of significant simulation time that can be intractable (requiring months to years of

simulation time for the SPEC CPU2017 benchmarks).

While there have been many attempts to solve this problem, previous works were unable

to provide a combination of three things for multi-threaded workloads: (1) choosing accu-

rate representatives without detailed simulation, (2) demonstrating simulation speedup

3.6 Related Work 55

based on application representatives, not on overall application runtime and (3) allowing

the simulation of hardware designs that might not yet have analytical models. Our pro-

posal addresses all these concerns through the determination of application parallelism,

clustering, and the extrapolating of the results based on this information.

Sampled Simulation Methodologies. Sampled simulation methodologies applicable

to single-threaded applications [2, 20, 26, 27] and multi-threaded applications [30, 32,

33, 34, 43, 52, 79] are discussed in Chapter 2.

Analytical Modeling. There has recently been some progress on the development

of a completely analytical model for single-threaded [127] [128] and multi-threaded [85]

workloads. One major drawback of analytical models is the inability to estimate the

performance of next-generation hardware designs. New processor, cache, and memory

techniques without analytical models will not be able to use these methodologies.

Constrained Simulation. Multi-threaded checkpoints were used [124] for constrained

simulation. Their goal was to estimate the relative performance analysis of regions-of-

interest across multiple micro-architectures. They describe a mechanism for speedup

computation in the presence of artificial stalls added by the constrained replay of check-

points during simulation. There could be cases where the speedup computation is incon-

clusive. We support unconstrained simulation as well as constrained simulation and also

provide an absolute performance extrapolation methodology. For relative, cross-micro-

architectural performance analysis, unconstrained simulation is desirable as it need not

have to deal with artificial stalls.

Handling Busy-waiting. The problem of busy-waiting is mentioned in [77] although

in the context of multi-process programs using Message Passing Interface (MPI). The

work focuses on simulating a specific single-threaded process from multiple processes in

an MPI program and uses the selective logging feature of PinPlay to exclude the busy

waiting code from consideration, both in the profiling and simulation phases.

56 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

Workload Characterization. There are different works that study the time-varying

runtime behavior of standard benchmarks. Wu et al. [68] study the phase behavior of

SPEC CPU2017 workloads. Moreover, the work identifies the single-threaded simulation

points using SimPoint methodology and correlates them with the phase behavior. Nair

et al. [129] study the phase behavior of SPEC CPU2006 and SPEC CPU2000 using Sim-

Point methodology. The work demonstrates that SimPoint yields similar CPI prediction

results for both application suites, suggesting similar phase behavior.

3.7 Conclusion

The need to understand larger, more complex multi-core processors continues to increase.

This becomes even more critical as the multi-core processors (and the serial code) tend to

be the bottleneck in highly parallel applications. General-purpose applications are found

on embedded devices, mobile phones, and back-end data center servers. While platforms

may differ in their demands, accurately understanding the applications remains crucial.

Simulation solutions alone are insufficient because of the significant slowdown (10,000×

or more [6]) seen when simulating applications with industrial-quality simulators. Simu-

lation solutions today require alternatives like sampling to reduce the workloads to real-

istic simulation times. However, current sampling solutions either target single-threaded

workloads or are only applicable to specific workload types.

In this work, we present a generic multi-threaded sampling methodology, one that con-

siders the inherent parallelism of the application and allows for the automatic reduction

of workloads to sizes that are on the order of the representatives of the workloads them-

selves. We demonstrate how our classification methodology automatically partitions the

workload into representatives and allows us to predict the performance of the workloads

at hand with high accuracy.

Chapter 4
Viper: Utilizing Hierarchical Program
Structure to Accelerate Multi-core Simulation

You shall know the truth and the truth shall make you mad.

— Aldous Huxley

Workload sampling techniques typically rely on fixed-length intervals for analysis, which can
often be out of sync with the periodicity of program execution. Since an applications phase
behavior is strongly correlated to the code it executes, it can exhibit a hierarchy of phase
behaviors that can be observed at various interval lengths, rendering conventional sampling
techniques inadequate. We propose Viper, which leverages the hierarchical structure of
program execution in order to achieve better sampling accuracy and smaller regions, which
enables faster RTL simulations.

4.1 Introduction

As we approach the limits of technology scaling, there is a growing emphasis on efficient

and high-performance processor designs. Exploring and evaluating the design space of

these next-generation architectures is an essential part of this research. However, the

Alen Sabu and Changxi Liu contributed equally to this research.

58 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

traditional dependence on extremely time-consuming microarchitectural simulations for

large, realistic workloads proves impractical in addressing this challenge. For multi-

threaded workloads, this issue is further exacerbated by the complex interactions be-

tween multiple threads and the synchronization techniques employed to achieve scalable

performance. One solution to address this issue is sampled simulation, which selects a

representative subset of regions to simulate in detail and interpolates the performance of

the entire application based on this. Prior works [2, 8, 20, 33, 34, 130] have demonstrated

that, due to the repetitive behavior of workloads, sampling can often reduce the simula-

tion time by orders of magnitude while preserving the original program characteristics.

SimPoint [20] reduces the simulation time by leveraging the application’s phase behav-

ior for single-threaded workloads. It does so by splitting the application into fixed-size

regions, clustering them based on their execution behavior, and then simulating a rep-

resentative element from each cluster in detail to extrapolate the performance of the

entire application. However, a major drawback of this method is that it uses fixed-

size regions for analysis, which do not often align with the actual periodicity [19] of

program execution. Simpoint 3.0 [131] introduces variable length regions but does not

address application periodicity. Moreover, since an applications phase behavior [22, 132]

is strongly correlated to the code it executes, it can exhibit a hierarchy of phase behav-

iors that can be observed at different interval lengths [32]. Consequently, a single fixed

region size cannot effectively capture the full spectrum of phase behaviors and often

leads to suboptimal phase classification [25].

Later works, such as BarrierPoint [34], TaskPoint [44], and LoopPoint [8], address this

shortcoming by utilizing the program structures and constructs within the application

code to split the application into a series of independently analyzable regions to build

a representative sample. Unfortunately, however, both BarrierPoint and TaskPoint

only apply to specific classes of applications. BarrierPoint targets applications that use

4.1 Introduction 59

global barriers for synchronization, whereas TaskPoint targets task-based applications.

While LoopPoint applies to generic multi-threaded applications, the regions it selects

do not necessarily align with the application’s phase behavior. Moreover, all these tech-

niques use large region sizes (≈100 million instructions or more per thread), suitable

for microarchitecture-level simulations (which take a few hours) but not for RTL-level

simulations, which may take weeks to months for completion. In addition, no previous

methodology provides a solution to detect small regions needed for RTL-level simulation,

as they would typically result in aliasing [32], leading to unpredictable results. In this

work, we propose a solution to solve both of these issues to achieve high performance

and accuracy.

The goal of this work is to address the generic sampling problem by selecting repre-

sentative regions that align with the application phases for simulation. Utilizing the

innate program structures instead of fixed-length intervals allows for flexible region sizes

that are more likely to be aligned with the application periodicity, thereby reducing the

chances of aliasing [32]. To do this, we present a novel methodology, Viper, that enables

fast and efficient analysis prior to sampled simulation. In short, we make the following

contributions to this work:

• We propose a novel methodology, Viper, that goes beyond prior state-of-the-art

sampled simulation techniques to allow for fine-grained region selection and accu-

rate performance reconstruction.

• We present a methodology that meets the requirements for RTL simulations for

accurate performance estimations. We show this by performing experiments on

microarchitecture-level and RTL-level simulators, enabling the detailed evaluation

of large benchmarks.

• We provide an extensive evaluation of Viper and demonstrate best-in-class accu-

racy (average sampling error of just 1.32%) and speedup of up to 2,710×, with an

60 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

average of 358× for the train input set of SPEC CPU2017 benchmarks. We also

explore the accuracy and performance trade-offs of Viper in comparison with prior

works.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the relevant

background and the challenges involved in the simulation of multi-threaded applications.

Section 4.3 presents the Viper methodology in detail. We then discuss the experimental

infrastructure in Section 4.4, followed by an extensive evaluation of Viper in Section 4.5

showcasing the applicability of the proposed methodology and conclude the chapter in

Section 4.6.

4.2 Background and Motivation

In this section, we present the background to understand the key features of sampled

simulation. We also discuss the challenges in simulating large workloads and how the

existing sampling methodologies are insufficient to address them.

4.2.1 Program Sampling

Sampling is the process of selecting a minimal subset or a sample from a population to

represent the entire population. The attributes or characteristics of the population are

estimated using the selected sample. We employ this technique to reduce the simulation

time of large workloads by simulating a representative sample from the entire program

execution. Prior works [2, 20] split an application into a series of execution slices and

cluster these slices with similar execution features into groups. These techniques demon-

strate high performance by simulating selected representative slices from each group to

represent the entire cluster of software slices.

Single-threaded sampling is largely considered to be a solved problem, whereas multi-

threaded sampling has been a long-standing problem due to the complexity of the work-

4.2 Background and Motivation 61

load behavior: threads that sleep, synchronize, or are being delayed in spin-loops, among

other issues. Alameldeen et al. [73] demonstrated the limitations of non-determinism

with multi-threaded workloads and demonstrated that IPC can be a poor performance

indicator [31], leading to inaccurate estimation of speedup or run time.

While initial works on multi-threaded sampling [79] focused on handling applications

with uncorrelated thread behaviors, subsequent research [32, 33] considered time as the

sampling unit that applies to synchronizing multi-threaded workloads. However, a major

drawback of this approach is that the whole application needs to be simulated sequen-

tially (i.e., it cannot be parallelized), and thus, the maximum attainable simulation

speedup is limited by the number of instructions in the whole application. Techniques

like BarrierPoint [34] and LoopPoint [8] consider application barriers and loops, respec-

tively, to define a unit-of-work [31]. BarrierPoint works on inter-barrier regions that can

be so large that it is infeasible to simulate them, limiting scalability. LoopPoint divides

the application into similarly sized regions enclosed within loop entries, ensuring size

limits. However, the regions may not align with application phases. While LoopPoint

regions are large enough to ensure accuracy and prevent aliasing, they are often too long

for RTL-level simulation.

4.2.2 Checkpointing Techniques

Checkpointing is a widely used technique to save the state of a simulation at a particular

point in time, which can then be restored later, allowing for further simulation or de-

bugging. Checkpointing is often used to parallelize simulation as well as to improve per-

formance by reducing the amount of time that needs to be spent re-simulating portions

of an application that have already been executed. For example, Checkpoint/Restore In

Userspace (CRIU) [133] is a well-known checkpointing mechanism on Linux. CRIU has

been integrated with major container engines like docker [134]. In addition, gem5 [6, 135]

uses its own checkpointing format that is useful to create microarchitecture-level snap-

62 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

shots of simulation that can be restored later. For x86 systems, the PinPlay infras-

tructure [77] supports storing the application state as architectural checkpoints, called

Pinballs, which can be replayed on PinPlay-enabled tools and simulators. Recent works

on executable checkpoints, like ELFies [47], are promising in terms of usability and

portability, as it is supported on popular microarchitecture simulators like gem5 [6] and

Sniper [14].

4.2.3 Microarchitectural State Warmup

Modern processors employ various techniques to improve performance, such as branch

prediction, caching, and speculative execution. These techniques can have a signifi-

cant impact on the workload execution run time. While simulating the key parts of an

application, it is important to rebuild or warm up the microarchitectural state of the

system. This ensures that subsequent simulations or performance measurements accu-

rately reflect the behavior of the processor. Methodologies like LoopPoint [8] rely on

simulating a large region right before the start of the simulation region to warm up the

microarchitectural state, while SMARTS [2] or time-based sampling techniques [32, 33]

enable functional warming during the entire simulation. TurboSMARTS [29] uses a

microarchitecture-level checkpointing mechanism to handle warmup that captures and

stores the functionally warmed system state before each simulation region. Checkpoint-

based warmup techniques require a large amount of storage. Moreover, it may not

always be suitable for microarchitecture design-space exploration that runs experiments

altering the memory hierarchy configuration, like cache sizes or the number of cache lev-

els, because it would invalidate the checkpoint for those regions, requiring new memory

checkpoints for each cache configuration.

4.3 The Viper Methodology 63

4.2.4 The Quest for Advanced and Efficient Sampling

With the widening gap between simulator performance and the processors they model,

running a cycle-accurate full-system simulation of large designs can be extremely time-

consuming. Current sampling solutions are primarily targeted for microarchitecture-level

simulations. Some recent works [48] attempted to adapt these solutions for RTL-level

simulations on Verilator [49] using smaller region sizes aiming to improve simulation

efficiency, which, however, resulted in accuracy that is typically not acceptable. The

result is that it is currently infeasible to evaluate the performance of large workloads

on the RTL level. Recent works [136, 137, 138] addressed the problem of accelerating

RTL simulation by leveraging techniques like batch processing, task-level dataflow ex-

ecution, low-level parallelism, and selective execution. These orthogonal techniques to

speed up simulation may not scale well for very large workloads. In addition, while

FPGA simulation infrastructures, such as Diablo [139] or FireSim [50], offer a faster

alternative for simulation, FPGAs are specialized devices with inherent limitations in

terms of memory capacity and logic capacity. This means that it is often not possible

to fit large, realistic processor models on FPGAs. This highlights the need for devel-

oping specialized workload sampling methodologies that can be flexibly applied to both

microarchitecture-level and RTL-level simulations. These methodologies should support

finer region granularities that align with the dynamic phase behavior exhibited by the

application. By tailoring the sampling approach to capture the specific characteristics

and phases of the workload, more accurate and efficient sampled simulations can be

performed.

4.3 The Viper Methodology

In this section, we describe the details of our proposed sampled simulation methodology,

Viper (depicted in Figure 4.1). Viper consists of four main steps: (i) Pre-profile Analysis

64 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

Checkpoint
Generation

Structure
Analysis

Region
Profiling/
Clustering

High-Level

µArch-Level

RTL-Level

Analysis Simulation

Figure 4.1: The workflow of Viper showing region identification, clustering, and simu-
lation. The hierarchical structure of an application is used to identify regions. Sampled
simulation is performed based on the clustering information of the regions. The simu-
lation can be performed on various kinds of simulators depending on the level of detail
required.

which marks the region boundaries at which we split the application, (ii) Region Profil-

ing, where the profiling information in the form of feature vectors is collected for each

region, (iii) Clustering, which groups together regions with similar execution behavior

based on the profiling information, and (iv) Simulation, where each application region is

simulated either in Detailed Mode or Fast-forward Mode based on the clusters formed.

The full application performance is reconstructed from the performance of each region.

In the subsequent subsections, we provide details on how each of these stages operates.

4.3.1 Exploring the Hierarchical Structure of Program Execution

Multi-threaded applications typically execute in a hierarchical flow, exhibiting different

cyclic behavior patterns at varying interval lengths. These repeating patterns, often

referred to as phases, are strongly correlated to the code executed by the application [18,

26, 32]. Thus, by analyzing the inherent program structures in an application’s code,

one can effectively capture the variations in its phase behavior. In Viper, we utilize this

principle to identify phase markers [26] – the points within a program that corresponds

to change in the application’s phase behavior. Phase markers can be used to split the

application into a series of independently analyzable regions.

There are several kinds of program constructs in a parallel multi-threaded code region,

4.3 The Viper Methodology 65

such as barriers and loops, which can serve as potential phase markers of the application.

Choosing barrier counts or loop counts over instruction counts to represent work can

accurately demarcate multi-threaded regions over several runs.

• Barriers: Multi-threaded applications include single-threaded and multi-threaded

code regions, with thread synchronization at boundaries using barriers that can be

detected by compiler-generated instructions or functions to mark new code regions

in machine code. In OpenMP-enabled applications, the GCC compiler generates

the _omp_fn identifier that can be used to detect barriers.

• Loops: Typically, generic multi-threaded applications consist of various levels

of nested loops. In our analysis, we use the application’s dynamic control-flow

graph (DCFG) [123] to identify the loops in the outermost level of the code region

as task loops and the remaining as inner loops or ordinary loops. The DCFG is

utilized to identify loop headers, and for each loop, information about their outer

loops and associated subroutines is then collected. This helps to determine whether

a loop is the outermost one in the current subroutine and if the current subroutine

is the outermost in the given multi-threaded region.

After identifying potential phase markers in the application, we prioritize them for use as

region boundaries. Barriers receive the highest priority due to their natural alignment

of threads. Prior studies [34] support this, highlighting that partitioning at barrier

boundaries prevents aliasing issues and increases accuracy. Next, task loops within a

code region receive the next highest priority, marking boundaries between parallel tasks.

Lastly, inner loops or ordinary loops are considered for finer granularity, albeit with lower

priority, as ordinary loops typically do not act as phase markers in large applications.

We then select a subset of these potential markers as region boundaries, considering their

priorities. We also ensure that the resulting region sizes are suitable for analysis, meeting

both a minimum (δmin = 10, 000, 000) instruction threshold to capture variations in

66 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

𝑏 	𝑀!"#

𝛿$!%
𝛿$&'

𝑀! 𝑎 	𝑀!"#

TimeProgram Start

Figure 4.2: The selection of region boundaries (or markers) in an application using
Viper. Marker Mi signifies the beginning of the current region with expected region
lengths to be between δmin and δmax instructions. Mi+1 is finally identified in accordance
with case (a) or (b) (described in section 4.3.1), which marks the end of the current
region.

phase behavior and avoid aliasing issues [14] and a maximum (δmax = 100, 000, 000)

threshold for efficient simulation in a reasonable amount of time.

Region Boundaries

Once the list of potential phase markers is identified, the next step is to collect the

highest-priority phase marker from every T (T ≈ 1,000,000) instructions. From this

highest-priority list, we further select a subset of phase markers to serve as the region

boundaries, subject to the constraints that the resulting region sizes approximately fall

within the range of [δmin, δmax] instructions as illustrated in Figure 4.2. This is done

by employing a greedy algorithm that selects only the highest priority potential phase

marker available beyond an interval of δmin instructions but within the next δmax in-

structions as the next region boundary (Figure 4.2a). If no such marker exists, the first

potential phase marker encountered is selected as the next region boundary, regard-

less of its priority (Figure 4.2b). Region boundaries are represented as triplets: (Image,

PCoffset , Count), denoting the object/library, instruction address offset from the Image’s

base address, and the address’s count.

Figure 4.3 shows the classification of all the markers identified by Viper in SPEC

CPU2017 applications, along with the chosen markers that serve as the region bound-

aries. We observe that applications like 638.imagick_s.1, 657.xz_s.1, and 657.xz_-

4.3 The Viper Methodology 67

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

0

20

40

60

80

100

Ty
pe

 o
f M

ar
ke

rs
 (%

)

Potential Markers
Barrier Task loop Inner loop

Selected Markers
Barrier Task loop Inner loop

Figure 4.3: The percentage distribution of the type of markers (barriers, task loops,
and inner loops) identified in the 8-threaded SPEC CPU2017 benchmarks using train
inputs. Potential Markers denote all the available markers in the application, while
Selected Markers signify the markers that serve as the boundaries of regions.

s.2 have a few or no barriers. Therefore, most of the selected markers are ordinary

loops that serve as region boundaries. On the other hand, Viper selects as many

barrier-bounded regions as possible, as observed in cases such as 607.cactuBSSN_s.1,

621.wrf_s.1, 644.nab_s.1, 654.roms_s.1, etc.

4.3.2 Region Profiling

Accurately capturing the execution behavior of a multi-threaded code region can be

complex as threads synchronize at different points using various synchronization prim-

itives, and the execution pattern of each thread may vary across multiple runs due to

differences in memory access patterns [73]. In Viper, we achieve this by using basic

block vectors or BBVs as described in prior works [8, 20, 34]. A BBV is the execution

fingerprint of a particular interval represented using basic blocks and their counts. Bar-

rierPoint [34] showed that using LRU stack distance vectors (LDVs) along with BBVs

can result in better clustering results. An LDV represents a fingerprint of the LRU-stack

distance vector for a particular interval, which helps distinguish the regions that execute

the same code but have different memory access patterns. We combine BBVs and LDVs

on a per-thread level for each region to form per-thread signature vectors or SVs [34].

68 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

In order to represent a multi-threaded region, we concatenate the per-thread SVs to

form a multi-threaded SV, which captures the amount of parallelism among the threads.

The multi-threaded SVs are used for clustering to determine the similarity among the

identified regions. We collect all the signature vectors using a high-level emulator.

4.3.3 Determining the Region Similarity

Once the application regions are identified and profiled, the next step is to determine

the regions with similar execution characteristics in order to group them together and

determine representative regions from among them. This is done based on the profiling

information collected for each region which consists of multi-threaded SVs derived from

the BBVs and LDVs of all threads, which are projected down to a smaller, fixed dimen-

sion. In our experiments, we use 1024 dimensions which could result in higher sampling

accuracy and is a good trade-off with respect to the performance. The resulting SVs are

then clustered using the k-means [113] clustering algorithm to group similar regions. We

use the SimPoint [20] infrastructure to perform the clustering.

4.3.4 Fast and Accurate Fast-Forwarding

To speed up the simulation, representative regions of the application identified in the

clustering stage are simulated in detail, whereas all the other regions are fast-forwarded.

Note that this is applicable only for microarchitecture-level simulators, and for RTL-

level simulators, we create simulation checkpoints as discussed in Section 4.3.6. During

the fast-forwarding phase, we ensure that all of the application threads make similar

forward progress in time at regular intervals. This is particularly important because

both the functional and timing simulations are disabled during this phase, which can

lead to thread orderings that would not typically occur.

4.3 The Viper Methodology 69

4.3.5 The Warmup Challenge

One of the major challenges in sampled simulation is to build an accurate microarchi-

tectural state before the start of every region to be simulated in detail. It is essential to

choose a method that is flexible to support different cache configurations and can quickly

build the right state, as this can significantly impact the overall speedup achieved. In

this work, we choose the memory timestamp record (MTR) [5] warmup technique that

can quickly build the cache state at run time. From our experiments, we observed that

the harmonic mean of the slowdown due to MTR reconstruction is just 7.97% for SPEC

CPU2017 benchmarks using train inputs. We implement MTR to collect the cache line

information accessed by each Load and Store instruction during simulation, ordered in

LRU fashion per set. The requests are then injected into the cache in the right order to

rebuild the appropriate cache state before the simulation. We focus explicitly on cache

warming in simulation, as smaller structures like prefetchers tend to warm up rapidly.

For our RTL-level simulations, we simulate a warmup region right before the start of

detailed performance measurements of the simulation region.

4.3.6 Generating Simulation Checkpoints

Checkpointing is a widely used technique to capture the system state as a checkpoint

and later restore it. We use the application binaries to guide the microarchitecture-level

simulations. In order to guide RTL simulations, we create RISC-V full-system check-

points using MINJIE infrastructure [48]. The checkpoints are restored later to simulate

them in parallel on the RTL implementation of XiangShan [48] RISC-V processor using

Verilator [49].

70 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

0
2.0
4.0
6.0

IP
C

(a) The aggregate IPC of the full run.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

0
2.0
4.0
6.0

IP
C

(b) The aggregate reconstructed IPC using Viper.

Figure 4.4: Plot (a) shows the aggregate IPC of the full run, and plot (b) shows the
reconstructed IPC of the 644.nab_s.1 benchmark using Viper. This example shows the
benchmark running with test inputs using 8 threads. The shaded regions in the plot (b)
represent the regions simulated in detail.

4.3.7 Simulation of Representative Regions

The region that lies the closest to the cluster centroid is taken as the representative

of that cluster. We identify all the cluster representatives, and these regions are simu-

lated in parallel using the generated checkpoints. In order to show that the proposed

methodology works for both microarchitecture-level simulators and RTL-level simulators,

we perform our simulations on Sniper (microarchitecture-level) as well as on Verilator

(RTL-level). We use the MTR warmup technique to rebuild the right micro-architecture

state and inject it into the simulator before the detailed simulation, as discussed in Sec-

tion 4.3.5. The performance of the overall workload is estimated from the performance

obtained from the simulation of the representative regions. Figure 4.4 shows Viper’s IPC

reconstruction from representatives for the 644.nab_s.1 benchmark (SPEC CPU2017)

using test inputs.

4.4 Experimental Setup 71

4.4 Experimental Setup

In this section, we discuss the experimental setup to evaluate the Viper methodology.

We describe the workloads and the platform used to conduct the experiments.

4.4.1 Simulation Tools

We implemented the support for Viper on Sniper [14] version 7.4, which is configured

to model Intel’s Gainestown microarchitecture, which is the latest hardware-validated

microarchitecture available on Sniper. More details on the configuration used for the

simulation are shown in Table 4.1. We modified the front-end of Sniper to support Viper’s

region specification. However, we expect that implementing this region specification

support on other software simulators like gem5 [6, 135] or ZSim [93] is possible. For RTL-

level simulations, we use Verilator [49] to simulate the RISC-V processor XiangShan [48]

using the checkpoints generated using the MINJIE platform. In this work, we generate

the simulation checkpoints using NEMU [48]. The methodology is also applicable to

other RTL simulators (like VCS [94]) if corresponding checkpoints are generated.

Table 4.1: The configuration of Gainestown microarchitecture.

Component Parameters

Processor 8 cores, 2.66 GHz, 128-entry ROB
Branch predictor Pentium M, 8 cycles penalty
L1-I/D 32KB, 4/8 way, LRU
L2 cache 256KB, 8 way, LRU
L3 cache 8MB per core, 16 way, LRU

4.4.2 Benchmarks Used

SPEC CPU2017 benchmark suite [117] is a widely used collection of applications used

for computer architecture evaluation and exploration. The benchmarks are written in

C, C++, Fortran, or a combination of these programming languages. We use the multi-

72 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean

105

106

107

108

Si
m

. W
al

l T
im

e
(s

)

1 day

1 week
1 month

1 year
Full RTL Viper

Figure 4.5: A comparison of the estimated wall time to simulate SPEC CPU2017
benchmarks using train inputs and 8 threads for the full simulation (Full RTL) and Viper.
We use the simulation rate of XiangShan on Verilator and assume parallel simulation of
all the representative simulation checkpoints.

threaded OpenMP-based subset of the SPEC CPU2017 benchmarks that are enabled for

multi-threaded execution. We use the speed version of these benchmarks configured to

use eight statically scheduled threads. Note that these are multi-threaded benchmarks

that synchronize and share memory. SPEC CPU2017 benchmarks use three different

inputs: test, train, and reference (ref). We configure the SPEC CPU2017 benchmarks

to use the train inputs for our evaluation. These benchmarks are compiled for x86-64

architecture using GCC 6.4.0 and gfortran with the -O3 optimization compiler flag. The

multi-threaded benchmarks are configured to use passive OpenMP thread wait policy.

4.4.3 Analysis Tools

We use Intel’s Pin [116] to build the analysis and profiling tools (Pintools) that we use for

this methodology. We also utilize the Dynamic Control Flow Graph (DCFG) tool [123]

included in the Pin distribution to collect potential markers that are used to identify

regions. DCFG collects the trace information of the application, which can be utilized

by implementing a pintool to detect barriers and loops that can act as region markers.

4.5 Evaluation 73

4.5 Evaluation

In this section, we describe the experimental results of the proposed methodology. We

also present the key factors that affect the performance of the methodology.

4.5.1 Comparison with State-of-the-Art

We first show the estimated wall time of full RTL simulation and Viper using XiangShan

on Verilator. Then we evaluate the accuracy and performance of Viper using Sniper

and compare it with LoopPoint (Chapter 3), the state-of-the-art sampled simulation

methodology for multi-threaded applications [8]. We then conduct detailed studies on

how region length affects speedup and accuracy. We do not evaluate the accuracy of

Viper on XiangShan as full RTL simulation takes more than a year for SPEC CPU2017

benchmarks using train inputs. In our experiments, we calculate the average value by

taking the geometric mean of the values across all benchmarks.

RTL-level Simulation. Figure 4.5 shows the total time required to simulate SPEC

CPU 2017 benchmarks using Verilator. Unlike prior works, we observe that the sampling

efficiency is bounded by the largest region identified by the sampling methodology. Viper

could significantly reduce the simulation time of these large workloads from more than

a year to less than a week or even a day in some cases.

Accuracy. Viper achieves similar or better error rates as compared to prior multi-

threaded sampling methodologies like BarrierPoint or LoopPoint. To measure the sam-

pling accuracy of the proposed methodology, we compare the simulation runtimes Tfull

obtained from the full simulation and Tsample obtained from the sampled simulation.

The absolute runtime prediction error ∆ can be represented as ∆ = |1 − Tsample

Tfull
|.

Figure 4.6 shows a comparison of absolute run time prediction errors with Viper and

LoopPoint obtained for the 8-threaded SPEC CPU2017 benchmarks using train inputs.

74 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean
0

2

4

6

8

A
bs

. R
un

tim
e

Er
ro

r% LoopPoint Viper

Figure 4.6: A comparison of the absolute runtime prediction error for Viper and
LoopPoint. We use SPEC CPU2017 benchmarks that use train inputs and 8 threads.

Viper performs similarly to LoopPoint while achieving lower maximum and average

(1.32%) errors. The results validate that choosing regions that are aligned to application

phases, while potentially much smaller in length, can achieve better accuracies.

We evaluate the performance of Viper for 16 threads using the same set of SPEC

CPU2017 benchmarks along with train inputs (except for 657.xz_s.1 and 657.xz_-

s.2, which run only with one thread and four threads, respectively). For the rest of

the benchmarks, we observe an average absolute error in the run time of 1.79%. The

maximum error that we observe is 5.29% (for 603.bwaves_s.2), whereas the minimum

error is 0.01% (for 638.imagick_s.1).

Speedup. The speedup is the ratio of the wall time required for the full simulation to

that of the sampled simulation. We define serial speedup as the speedup achieved when

the samples are simulated sequentially, whereas parallel speedup is the speedup achieved

when the samples are simulated in parallel.

We compare the speedup of the proposed methodology with LoopPoint as shown in

Figure 4.7a (parallel speedup) and Figure 4.7b (serial speedup). Viper outperforms

LoopPoint in all but one case for parallel speedup, as shown in Figure 4.7a. We observe

that Viper samples fewer but larger loop-bounded regions compared to LoopPoint for

627.cam4_s.1 resulting in longer simulation times. This is because 627.cam4_s.1 has

4.5 Evaluation 75

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean

102

103

Sp
ee

du
p

LoopPoint Viper

(a) Parallel Speedup

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean

101

Sp
ee

du
p

LoopPoint Viper

(b) Serial Speedup

Figure 4.7: A speedup comparison of LoopPoint and Viper for the 8-threaded SPEC
CPU2017 benchmarks using train inputs.

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean
0.0
2.5
5.0
7.5

10.0
12.5
15.0

A
bs

. R
un

tim
e

Er
ro

r%

18.7

10M 20M 50M 100M

Figure 4.8: Runtime prediction error for 8-threaded SPEC CPU2017 benchmarks using
train inputs for different region sizes.

larger loops and unlike LoopPoint, Viper does not split applications at random loops.

In the case of serial simulations, Viper outperforms LoopPoint in most cases (9 out of

14) in Figure 4.7b. The maximum serial speedup achieved by the proposed methodology

is 6.23×. The primary reason behind achieving more speedup is that the region size of

Viper corresponds to the phase boundaries of the application, unlike the fixed region

sizes in LoopPoint.

4.5.2 Varying Region Sizes

We use Viper methodology to illustrate the experimental results using different region

sizes to show their effect on error rates. We also show the importance of choosing regions

inherent to the application structure instead of fixed-size slices. We use Viper to select

76 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

ge
om

ean

101

102

Sp
ee

du
p

10M 20M 50M 100M

Figure 4.9: The speedup achieved for 8-threaded SPEC CPU2017 benchmarks using
train inputs. Viper is used to identify regions of fixed sizes.

fixed-size regions of 10 million, 20 million, 50 million, and 100 million instructions.

We show the accuracy in predicting the run time of each of the benchmarks. As shown

in Figure 4.8, there is no correlation between the region sizes and accuracies. For ex-

ample, in the case of 628.pop2_s.1, 638.imagick_s.1, or 654.roms_s.1, the error de-

creases with an increase in region size. However, larger region size does not always yield

better accuracy in some other cases. For example, benchmarks like 603.bwaves_s.1,

621.wrf_s.1 and 627.cam4_s.1 achieve their best accuracies when the region size is

around 50 million. We infer from the experiment that there is no general region size that

can be used for every application, which motivates us to choose application-dependent

regions.

The average error of Viper-100M (regions of size ≈ 100M) is 0.74%, whereas that for

Viper is 1.32%. Although using a larger region size yields a slightly better average error,

Viper consistently achieves better accuracies for most benchmarks.

Speedup. As Figure 4.9 shows, the speedup is larger for smaller atomic region sizes in

most cases (although the errors can be higher). For smaller region sizes, clustering allows

there to be fewer instructions to be simulated in detail overall, which allows for a larger

speedup. However, in certain cases, the number of regions to be simulated in detail

4.6 Conclusion 77

can be much more when the region sizes are smaller. For example, 649.fotonik3d_s.1

achieves a smaller speedup at region size 20M when compared with that of region size

50M. Comparing Figure 4.7b with Figure 4.9, we observe that the speedup achieved

using Viper-100M is similar to that of LoopPoint.

4.6 Conclusion

In this work, we propose a novel sampled simulation methodology and infrastructure

called Viper that shows significant improvement in performance over the existing method-

ologies which is applicable to both microarchitecture-level and RTL-level simulators.

Viper is both a fast (358× speedup on average) and an accurate (with an average error

of just 1.32%) simulation methodology as evaluated with the multi-threaded subset of

SPEC CPU2017 benchmarks using train inputs.

Chapter 5
Pac-Sim: Simulation of Multi-threaded
Workloads using Intelligent, Live Sampling

If you want to find the secrets of the universe, think in terms of

energy, frequency, and vibration.
— Nikola Tesla

Modern systems are becoming increasingly complex and dynamic. With the high level of
dynamic optimizations in these systems, it is crucial to simulate next-generation multi-core
processors in a way that can respond to system changes and accurately determine system
performance metrics. We propose Pac-Sim, a novel sampled simulation methodology that
overcomes the limitations of traditional approaches by enabling fast and accurate simulations
even in the presence of dynamic hardware and software behavior. This is achieved through
live sampling, eliminating the need for upfront workload analysis.

5.1 Introduction

Computer architecture research heavily relies on simulations for design space exploration.

However, microarchitectural simulation can become extremely time-consuming, particu-

Alen Sabu and Changxi Liu contributed equally to this research.

80 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

larly as the complexity of modern architectures has increased over time. This is especially

true in the post-Dennard era, where architectures are rapidly evolving to incorporate

complex dynamic optimization techniques at both the hardware and software levels to

improve system performance gains at runtime. Hardware-based dynamic techniques such

as dynamic cache reconfiguration [38, 39, 40], DVFS [35, 36, 37], TurboBoost [41] and

power management [140] techniques trigger optimizations based on dynamically identi-

fied hardware states (such as core frequency, cache reuse distance, etc.) to improve both

energy-efficiency and overall performance of the system. Similarly, runtime information

at the software level can be used to dynamically optimize code execution, to further en-

hance the system performance. Some of the recent efforts on software-based optimization

focus on dynamically scheduling tasks among threads [42, 141] to ensure efficient resource

utilization and employing just-in-time (JIT) compilation techniques [142, 143, 144, 145]

that generate high-performance instructions to optimize program execution online. How-

ever, since these techniques utilize dynamic system state information in order to deploy

optimizations at runtime, the execution behavior of an application (and, therefore, its

performance) may vary greatly across multiple executions. This inherent variability may

lead to an inaccurate performance evaluation when using existing simulation method-

ologies.

Conventionally, sampled simulation has served as a reliable and efficient technique to

accelerate the performance estimation of multi-threaded workloads. In order to achieve

these results, most prior works relied on either (i) profile-driven sampling [8, 20, 34] or

(ii) statistical sampling [2, 146]. Profile-driven sampled simulation methodologies such

as SimPoint [20], BarrierPoint [34], and LoopPoint [8] (Chapter 3) split the execution

of an application into a series of repeatable regions and cluster them based on their

execution features. A representative element from each cluster is then analyzed or sim-

ulated in order to extrapolate the performance of the entire application. However, these

methodologies incur a significant cost in terms of the preprocessing effort that is needed

5.1 Introduction 81

to identify representative regions. These costs include the time required to profile and

cluster the execution features of all application regions, along with the storage required.

While it has been previously argued that these costs are a one-time investment and will

be amortized over multiple runs, this argument does not necessarily hold for systems

that optimize code execution dynamically. In such cases, the program execution paths

followed by an application may vary considerably due to changes of hardware and soft-

ware parameters that are being optimized. Therefore, the profiling information collected

for one specific run would not necessarily extend to the program execution paths followed

in the subsequent runs.

On the other hand, methodologies such as SMARTS [2] and PCantorSim[146] rely on

statistical sampling techniques to speed up simulation-based performance measurements

while meeting a given error bound. Unlike profile-driven sampling, these methodologies

require minimal preprocessing and do not rely on the reproducibility of program exe-

cution paths. They are thus applicable to dynamically optimized systems. However,

the simulation speedups achieved using these techniques are considerably lower than the

profile-driven counterparts, and adjusting settings to achieve higher performance could

lead to high errors.

For the above-mentioned reasons, it becomes challenging to sample and simulate generic

multithreaded applications for dynamic hardware and software using existing methodolo-

gies. Architects need a simulation methodology that can dynamically adapt to changes in

the system at runtime while accurately estimating the application’s performance without

relying on the reproducibility of its execution. To this end, we propose Pac-Sim, a novel

sampled simulation methodology that can, at runtime, efficiently analyze and sample

the application to select the representative regions to be simulated in detail. The result

is a methodology that enables both fast and accurate performance evaluation without

82 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

the need for up-front analysis. We accomplish this by making use of an intelligent online

predictor and classifier that quickly and accurately decides whether the upcoming region

needs to be simulated in detail.

In short, we make the following contributions:

i. We propose Pac-Sim, a methodology that goes beyond prior sampled simulation

techniques to be the first to allow for dynamic hardware and software support.

The methodology requires no upfront analysis and relies on an online predictor for

sampling decisions enabling the fast analysis of co-designed workloads.

ii. We experimentally demonstrate that Pac-Sim consistently improves performance

in terms of speedup and accuracy over prior works that use offline profiling, as

Pac-Sim utilizes a lightweight but accurate online sampling technique.

iii. We provide an extensive evaluation of Pac-Sim using standard benchmarks to com-

pare against prior works and demonstrate best-in-class accuracy (average error of

1.63%). For the SPEC CPU2017 benchmarks (train inputs) running eight threads,

we show a maximum serial speedup of 123.32× (26.09× on average) and a maxi-

mum parallel speedup of 523.5× (210.3× on average).

iv. Finally, we showcase several case studies demonstrating that Pac-Sim is applicable

to a number of research scenarios, including (but not limited to) the investigation

of optimization techniques such as dynamically scheduled software and improving

research into dynamic hardware and hardware-software co-design.

The rest of the chapter is organized as follows. In Section 5.2, we discuss the relevant

background and the challenges involved in the simulation of dynamic applications on

modern architectures. Section 5.3 presents the Pac-Sim methodology in detail. We then

describe the experimental infrastructure in Section 5.4, followed by an extensive evalu-

We use the terms “online” and “offline” to distinguish between events that occur during and prior
to the simulation of an application, respectively.

Pac-Sim has been open-sourced and can be found at https://github.com/snipersim/snipersim.

https://github.com/snipersim/snipersim

5.2 Simulating Modern Architectures 83

Table 5.1: This table summarizes previously proposed sampled simulation method-
ologies for both single-threaded and multi-threaded applications. We categorize these
methodologies into two main groups: Profile-driven and Statistical. The table also iden-
tifies the Analysis Type used by each methodology. Notably, some methodologies require
an upfront analysis or profiling phase to extract application-specific characteristics. Ad-
ditionally, the table indicates which methodologies are amenable to parallel simulation,
which determines the maximum speedup of the methodology. The field Warmup shows
the warmup technique used to reconstruct the microarchitectural state at the beginning
of the detailed simulation.

Methodology Analysis
Type

Parallel
Simulation Warmup Applicability

Pr
ofi

le
-d

riv
en Simpoint [20] Prev Region Single-threaded

LiveSim [27] Checkpoint Single-threaded
BarrierPoint [34] Prev Region Multi-threaded
TaskPoint [43] Prev Region Task-based
LoopPoint [8] Prev Region Multi-threaded

St
at

ist
ic

al SMARTS [2] Functional Single-threaded
SimFlex [30] Checkpoint Multi-program
Time-Based
Sampling [32, 33] Functional Multi-threaded

Pac-Sim (this work) Statistical Multi-threaded

Online Profiling Offline Analysis Offline Profiling

ation of Pac-Sim in Section 5.5 along with case studies to demonstrate the applicability

of the proposed methodology. Finally, we present the related work in Section 5.6 and

conclude the chapter in Section 5.7.

5.2 Simulating Modern Architectures

In this section, we provide the necessary background and prior work of sampled simula-

tion. Table 5.1 summarizes the widely used sampled simulation methodologies applicable

to CPU workloads. We also discuss the challenges in simulating modern workloads and

how the existing sampling methodologies are insufficient to address them.

Sampling Single-threaded Workloads. Sampling and workload reduction tech-

84 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Single Threaded Multi-threaded
0

5

10

A
bs

. R
un

tim
e

Er
ro

r%

50.0 115.294.7 177.7

Single Threaded Multi-threaded

104

105

Si
m

. W
al

l T
im

e
(s

)

1 hour

1 day

Full SMARTS-1M-10 SMARTS-1M-100 SMARTS-100K-10 Pac-Sim

Figure 5.1: Performance comparison of Pac-Sim with SMARTS [2] in different settings
for the SPEC benchmark 644.nab_s.1 (multi-threaded version uses 8 threads). The left
graph shows the comparison of runtime prediction errors using different sampled simu-
lation techniques, whereas the right graph shows the overall simulation time (running
on a parallel simulator). Both figures use lower-is-better metrics. SMARTS-A-B repeat-
edly switches between a single detailed simulation region of length A and B fast-forward
regions of length A.

niques are extensively utilized in computer architecture research for the purpose of

program characterization and to reduce simulation time. Sampling methodologies al-

low for the evaluation of a subset of the workload (a representative sample) in detail

that can be used to reconstruct the performance of the whole workload accurately. These

methodologies split the workload into different regions (or slices) based on predetermined

conditions in order to identify a representative sample. Prior works that explored CPU

workload sampling, like SimPoint [20] and SMARTS [2], tend to utilize fixed instruction

counts to determine regions. However, instruction count-based techniques could lead to

inconsistent and, therefore, invalid regions [31, 32, 73]. Some previous works [26, 123]

proposed software phase markers that identify procedure and loop boundaries that cor-

relate with phase changes to mark region boundaries instead of using fixed-sized regions.

Sampling Multi-threaded Workloads. SimFlex [30], which selects sampling units

for the simulation of server throughput workloads, does not appear to be generally exten-

sible to synchronizing multi-threaded workloads [32]. In the presence of synchronizing

threads, the application performance tends to vary more frequently [31, 32]. Sampling

methodologies such as SMARTS, SimFlex, and PCantorSim [146] rely on statistical

5.2 Simulating Modern Architectures 85

confidence, and adjusting settings to achieve higher performance could lead to high er-

rors, as shown in Figure 5.1. Time-based Sampling methodologies [32, 33] are the first

to address the problem of sampling synchronizing multi-threaded applications. These

methodologies are generally applicable and are suitable for the sampled simulation of

dynamic systems. However, Time-Based Sampling techniques are the slowest of all the

sampling techniques, and as a result, they are not practical for handling long-running

workloads. On the other hand, methodologies like BarrierPoint [34], TaskPoint [43], and

LoopPoint [8] select specific program constructs, such as barrier synchronization primi-

tives, task instances, and loops, respectively, to identify periodic behavior. This enables

the utilization of representative-sized regions for simulation, regardless of the program’s

length.

Feature Vectors. Profiling captures feature vectors to characterize the execution

behavior of an application across regions. Previous works have introduced several

microarchitecture-independent feature vectors, of which basic block vectors (BBVs) [20,

52] are the most widely used for performance characterization. Lau et al. [18] showed

a strong correlation between BBVs and region performance. Apart from BBVs, Shen

et al. [75] introduced LRU stack distance vectors (LDVs) [147] to summarize program

behavior for different regions. BarrierPoint [34] combines BBVs and LDVs into a sig-

nature vector (SV) in an attempt to represent more accurate features of multi-threaded

applications. Furthermore, Cotson [80] and Dynamic sampling [148] record statistics

such as the number of instructions executed, memory accesses, exceptions, bytes read or

written, etc., in order to plot the feature of a given region. Unfortunately, none of these

offline techniques can handle runtime optimizations that impact applications.

Overheads. Figure 5.2 illustrates the overhead of profiling data for LoopPoint (the

evaluation was performed using the LoopPoint tools [149]) methodology, indicating that

profile-driven methodologies incur significant overheads. When it is required to emulate

86 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
-s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1
0

100

200

300

400

W
al

l T
im

e
(h

r)

BBV Clustering Checkpoint

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
-s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

102

103

104

105

St
or

ag
e

(M
B

)

Figure 5.2: The figure shows the resource utilization of a recent multi-threaded sampled
simulation technique, LoopPoint, for the SPEC CPU2017 benchmarks with the ref
inputs running eight OpenMP threads. The graph on the left shows the time required to
generate the profiling data (with checkpoints stored as pinballs [3]), whereas the graph
on the right shows the amount of storage required.

an architecture (for example, simulating ARM or RISC-V binaries on x86) during profil-

ing, it is necessary to resort to functional simulation to gather feature vectors, which can

be a time-consuming process. For instance, Sandberg et al. [78] demonstrated that it

took up to a month to generate profile data for SPEC CPU2006 benchmarks using simu-

lators like gem5. Prior works [8, 34] argue that this overhead is amortized over multiple

runs as the profiling results will be reused. However, this assertion does not hold in the

case of dynamic software and hardware where certain performance optimization deci-

sions are made using runtime information. For example, profiling for asymmetric cores,

such as the big.LITTLE cores is challenging as the operating frequency (and other dy-

namic hardware settings) of each core may not be known during profiling. Handling and

storing simulation checkpoints can be a daunting task. For instance, x86 architecture

checkpoints like ELFies [47] require a significant amount of storage space. Checkpoints

are often specific to a simulator or are tied to particular software/hardware configu-

rations. Microarchitectural checkpoints, requiring detailed hardware information like

cache states, are specific to the underlying hardware configuration.

Hardware and Software Dynamism. Researchers have introduced several dynamic

5.2 Simulating Modern Architectures 87

optimization techniques in hardware and software to achieve higher performance and

reduce power consumption. Techniques such as dynamic voltage and frequency scaling

(DVFS) and cache reconfiguration have been developed to adjust the hardware state

in response to executed instructions and active processes. Software optimization tech-

niques [142, 143, 144, 145] generate optimized code sequences at runtime. Additionally,

dynamic scheduling techniques [42] have been developed for multi-threaded applications.

In such cases, profile-driven sampling methodologies could show different performance

results for each execution. Methodologies such as trace-based simulations [150] or de-

terministic replay platforms [77] can guarantee consistent performance across multiple

executions but demand extensive profiling and large storage resources. Dynamic hard-

ware events, such as changes in core frequency, cache size, etc., can be unknown during

profiling. These events, when they are performance and power-dependent, become dif-

ficult to predict. Sherwood et al. [22] utilize a Markov predictor to predict the phase

behavior at runtime. Kihm et al. [151] propose switching to the detailed simulation

mode whenever the BBV variance exceeds a specified threshold. However, these meth-

ods have only been demonstrated with single-threaded applications as the phase behavior

of synchronizing multi-threaded applications varies frequently due to the interaction of

threads.

Requirements for Fast and Accurate Simulation.

Sampled simulation techniques that do not require upfront application analysis demon-

strate significant potential under dynamic software and hardware constraints. The inher-

ent variability of dynamic software behavior renders a single analysis insufficient, while

the unpredictable nature of modern hardware compromises the reliability of upfront

analysis. Additionally, the overhead due to the detailed application analysis becomes

a bottleneck for researchers engaged in fields like hardware-software co-design. There-

fore, it is imperative to leverage the best aspects of SimPoint-like and SMARTS-like

88 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

methodologies to achieve optimal simulation efficiency and accuracy. In our approach,

we integrate application analysis to guide sampled simulations, similar to SimPoint-like

methodologies, but without the need for upfront preprocessing, as seen in SMARTS-like

methodologies. In our work, we capture the dynamic information of the software and

hardware to make intelligent simulation decisions through online learning. Therefore,

our methodology is capable of handling hardware state changes, software dynamism, and

other factors influencing application performance. To achieve optimal performance with

online analysis, efficient and lightweight profiling, clustering, and warmup techniques are

essential.

In short, to quickly estimate the performance of multithreaded applications running

on next-generation hardware, a sampled simulation methodology is needed that can

dynamically adapt to changes in the system at runtime while accurately determining

relevant performance metrics. In Section 5.3, we will provide a thorough discussion of

these aspects and present our solution for fast and accurate simulation.

5.3 The Pac-Sim Methodology

In this section, we describe our proposal for an end-to-end sampled simulation method-

ology, Pac-Sim (see Figure 5.3), that supports both dynamic hardware and software

without requiring up-front workload analysis. Pac-Sim consists of five main stages:

Marker Detection, Region Profiling, Clustering, Prediction, and Simulation, which are

all carried out online. We have carefully designed each of these stages to minimize the

runtime overhead of the methodology while maintaining the sampling accuracy. An

important advantage of an online sampled simulation methodology like Pac-Sim is its

ability to accurately determine the execution profile of an application without relying on

the reproducibility of a program’s execution paths. This characteristic allows Pac-Sim

to accurately analyze and evaluate dynamic multi-threaded applications, accounting for

5.3 The Pac-Sim Methodology 89

any performance variability that may occur at runtime.

Pac-Sim operates by making use of the program structure and runtime hardware state

to identify the regions and their boundaries online. Each of these region boundaries or

markers defines the ending of the current region and the beginning of the next region

(Section 5.3.1). Once a marker is identified, Pac-Sim collects the profiling data and

simulation results of the current region (Section 5.3.2) and clusters it with the previously

identified regions to determine its cluster ID (Section 5.3.3). This cluster ID is added to

the program execution history, which is then used by the Predictor (Section 5.3.4) along

with the current marker and hardware state to predict whether the next region needs to

be simulated in detailed mode or fast-forward mode.

While we only demonstrate the effectiveness of Pac-Sim in estimating the performance of

synchronizing multi-threaded workloads in this work, our methodology has the potential

to support a variety of modern workload classes, such as cloud and mobile applications,

and could also be implemented for full system simulations. However, in such cases,

various factors must be taken into consideration, such as kernel and driver performance,

which can significantly impact the overall efficiency of the workloads. In this work, we

focus on user-space workloads, and enabling support for the above-mentioned use cases

is out-of-scope in this context, which we leave for future work.

5.3.1 Online Region Detection

Previous research [8, 26, 34] has shown that certain program constructs, such as barriers

or loops, can be utilized to characterize the phase behavior of multi-threaded applications

by splitting them into a series of individually analyzable regions. Since barriers represent

the global synchronization points within a program execution, all threads align at these

points, making them natural boundaries for application regions. However, relying solely

on barriers to split an application may not be ideal, especially in the presence of large

90 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Region Marker Mi+1
Region Ri+1

Pr
ed

ic
to

r

Feature Vector

Simulation

Marker Detection

Region Profiling C
lu

st
er

in
g

Cl
us

te
r I

D

Si
m

. M
od

e

Simulation

Marker Detection

Region Profiling

Region Ri

Time

●●●●●●

R0 ●●●R1 RiWorkload

Pac-Sim

Figure 5.3: The overall workflow of Pac-Sim methodology. At any given time, the
regions of a multi-threaded workload till Ri are identified (as shown above). First, Pac-
Sim monitors the application code structure to determine an appropriate region marker
Mi+1, which marks both the end of the region Ri and the start of the region Ri+1.
Next, the feature vector and simulation results for Ri are collected, and a prediction
mechanism determines the simulation mode for region Ri+1. Finally, region Ri+1 will
be simulated, either in detail or in fast-forward mode.

inter-barrier regions, as this can lead to low simulation speedups as representatives can

still be too large to complete detailed simulation in a reasonable amount of time. In

contrast, loops offer a finer level of granularity, allowing for greater control over the

size of regions. Typically, multi-threaded applications consist of both loops and barriers

in varying proportions. The online Marker Detector combines both of these program

constructs to effectively split multi-threaded applications into regions with sizes that are

well-suited for clustering while also avoiding aliasing [152]. The Marker Detector uses

the following approach in order to identify the barrier- and loop-based markers online:

Barriers. Typically, a multi-threaded region begins with a fork call, which spawns ad-

ditional worker threads and ends with a join call, which terminates the current thread

and synchronizes with other threads. A new region is triggered at events of thread

creation and termination, as regions with different active threads have different perfor-

mances. For multi-threaded programs that use the OpenMP library, special function

names are generated depending on the compiler used. We utilize this information in the

online Marker Detector to quickly and efficiently detect barriers with low overhead.

5.3 The Pac-Sim Methodology 91

Loops. Both loop and conditional statements use conditional branch instructions, with

the target address usually given as an offset from the instruction pointer. The key

difference between the two statements is that the offset of the branch instructions in a

loop statement is usually negative, whereas that in a conditional statement is positive.

In most cases, selecting conditional branches with negative offsets is sufficient to identify

loop markers [123]. In the rare case of exceptions, Pac-Sim predicts the simulation mode

of the next region to be detailed mode. We also make sure to disregard spinloops from

our analysis.

As an application executes, the Marker Detector identifies markers online, splitting the

application into multiple regions. While doing so, it also monitors the region sizes to

ensure they fall approximately within the bounds of δmin and δmax instructions. A mini-

mum number of instructions, δmin, is necessary to capture the frequent variations in the

multi-threaded program behavior and accurately cluster the obtained regions. When-

ever the Marker Detector chooses barrier-based markers as region boundaries, the size

of the region can be as small as δmin instructions but no larger than δmax instructions.

Otherwise, the Marker Detector chooses the first loop-based marker it encounters be-

yond δmax instructions as the next region boundary. For loop-bounded regions, it is

necessary to keep region sizes large enough to avoid aliasing [32]. In our experiments

with fixed region sizes of 10 million, 20 million, 50 million, and 100 million instructions,

the SPEC CPU2017 benchmarks showed average error rates of 6.9%, 3.3%, 1.8%, and

1.8%, respectively. We set the lower bound δmin to be 20 million to ensure sampling

accuracy and the upper bound δmax to be 50 million for better performance.

Hardware State. The Marker Detector also monitors the hardware state of the simu-

lated system. If it detects changes, the current region is ended at the next marker so that

each region has a consistent hardware state. Once a marker is detected, the program

counter (PC) and the hardware state of the simulated system are collected and stored

92 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

corresponding to the marker. The collected hardware state includes the system param-

eters, like processor frequency, cache size/configuration, power management techniques,

etc., that can be configured during runtime.

5.3.2 Online Region Profiling

Conventionally, BBVs have been used to characterize the execution behavior of code

regions, as they have been shown to exhibit a strong correlation with the region’s perfor-

mance [18]. BBVs record the execution counts of each basic block (i.e., code blocks with

single entry and exit points) within a given code region. The number of dimensions for

a BBV depends on the number of basic blocks executed, which could range anywhere

from thousands to even millions for very large applications. This presents a major chal-

lenge for online analysis of BBVs as the time and effort required for this stage would

significantly increase as the vector dimensionality increases. SimPoint [20] uses random

linear projection [153] to overcome this problem. However, this method is not suitable

for our online algorithm as the matrix-vector multiplication operations involved could

introduce significant runtime overheads.

To overcome these issues, we propose a fast online BBV generation technique (illustrated

in Figure 5.4). Rather than creating a fixed-size BBV for each region, we use an online

projection technique to generate fixed-size vectors BBV ′
i for each basic block BBi, where

the elements of BBV ′
i are computed by multiplying the instruction count of a basic

block with the hash results of its program counter (PC) value. We use the hash function

drand48(), which generates pseudo-random numbers for an integer value input. The

initial four dimensions of the online BBV are determined using the hash values utilizing

inputs PC, PC+1, PC+2, and PC+3, respectively. The values of the subsequent four

dimensions are generated using the output of the preceding four dimensions as inputs to

the hash function. We experimentally determined that using 16 dimensions adequately

captures the representation of a region using the online BBV. The resultant BBV ′
i

5.3 The Pac-Sim Methodology 93

●●●

hash1 (PC)× #insn

hashd-1(PC)× #insn

hashd (PC) × #insn

⊕

Basic Block BBi

subl t1, 0x2, t1
cmple t1, 0x3, t2
beq t2, 0x1200

BBVi

●●●

BBV

PC,
#insn

d = Dimension of BBV

Figure 5.4: The figure shows the workflow of online BBV generation. Whenever a basic
block BBi is encountered, a corresponding execution fingerprint BBVi is generated using
hash functions applied to the program counter of BBi and the number of instructions it
contains. hash1 to hashd are d distinct hash functions, where d is the dimension of the
BBV. The BBV for each region is obtained by accumulating all BBVis that belong to
the region.

vectors are then accumulated to obtain the per-thread BBV (BBV ′
online) for the given

region, which can be represented as:

BBV ′
online =

∑
i

BBV ′
i =

∑
i

(BBVi · Mproj),

where the values of the elements in Mproj are generated using hash functions as men-

tioned above. This BBV ′
online for a region is analogous to the BBV utilized in SimPoint,

which is obtained through random linear projection. The projected down BBV used in

SimPoint, BBV ′
offline, is obtained from the dot product of the actual BBV of the region

and projection matrix Mproj :

BBV ′
offline = BBV · Mproj =

∑
i

(BBVi · Mproj).

We then normalize these per-thread BBVs and concatenate them into a single global-

BBV vector to represent the software feature of a given multi-threaded code region.

In Pac-Sim, it is necessary to maintain the online BBV to capture the dynamic pro-

gram behavior. Using online BBVs to represent regions eliminates the need to perform

computationally intensive dimensionality reduction techniques during simulation.

94 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

5.3.3 Determining Region Similarity

Pac-Sim employs an online clustering mechanism to group regions with similar execution

behavior based on the feature vectors collected for each region in the online profiling

stage. The clustering, which is done at the end of simulating each region, is required

for the learning process of the Predictor. Prior works, like SimPoint [20], cluster feature

vectors using the k-means algorithm [113]. However, k-means uses an iterative refinement

technique that is computationally intensive, and therefore, a more efficient algorithm

might be better suited for online analysis.

In order to reduce this computational load and enable real-time clustering, we devise

an alternative technique for clustering feature vectors (i.e., global-BBVs) in Pac-Sim. In

our technique, we maintain two separate queues: (i) detailed queue and (ii) fast-forward

queue. The detailed queue includes the BBVs corresponding to the regions that have

been simulated in detail, while the fast-forward queue includes those corresponding to

the regions that have been fast-forwarded. When a new BBV is recorded, it is first

compared with the BBVs in the detailed queue. If its distance from any of these BBVs

is less than the specified threshold θ, then we return the cluster ID of the closest region.

If there is no region whose distance is less than θ, we repeat the same procedure with

the regions in fast-forward queue. If we still don’t find similar regions, we assign a

new cluster ID for the current region and insert it into the BBV queue corresponding

to its simulation mode. In our experiments, we set θ = 0.05 to ensure a reasonable

simulation accuracy while maintaining high speedups. To further improve the efficiency

of our clustering technique, we incorporate the triangle inequality optimization [154] into

our algorithm, which can skip redundant BBV distance calculations. We use Euclidean

distance for all BBV distance calculations.

5.3 The Pac-Sim Methodology 95

1 2 23 3 3 2

Current Sequence

3 ?3

M2

2 3
3 2 3

2 3 1 3 2

Predicted ID: 2

Execution Timeline

Cluster IDs

M0 M1 M1 M2 M2 M2 M2 M2 M2 M2

2

1

M1

1

Tries SetO
nl

in
e

In
se

rt
an

d
Se

ar
ch M0

Matched Sequence

(a)

SPEC.tra
in

NPB.A
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(b)

Figure 5.5: The predictor utilizes the trie [4] data structure to quickly predict the
cluster ID of the next region by searching for a similar history with the same region
start marker Mi. In this example, the cluster ID of the next region is predicted to be
2 since the prior region with the cluster ID of 2 has the same start marker M2 and the
longest matching sequence (3 → 3 → 2). Plot (b) shows the accuracy of the predictor
for different benchmark suites.

5.3.4 Prediction Mechanism

Pac-Sim employs a Predictor – an online prediction mechanism that leverages region

markers, execution history, and hardware state to predict the phase behavior of the next

region in an application and decide its simulation mode at runtime.

Region Markers. The Marker Detector identifies PC-based region markers that act as

the boundaries of the regions. In certain cases, using region markers to classify regions is

effective for applications where the same part of the code displays similar phase behavior,

as in the case of 619.lbm_s.1 and 644.nab_s.1 using train inputs.

Execution History. When executing the same part of the source code, differences in

memory access patterns, branching, etc., can result in varying phase behavior at runtime.

We, therefore, make use of execution history, which is a sequence of the cluster IDs of

prior regions, to predict these differences in the phase behavior among applications.

Hardware State. Pac-Sim takes into account the state of the simulated system, such

96 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

0 2 4 6 8 10 12 14 16 18
Instructions Executed (in Billions)

0
1
2
3
4
5
6
7
8

C
lu

st
er

 ID

Figure 5.6: The graph shows the regions identified using Pac-Sim for the NPB bench-
mark ft, grouped together with the respective cluster they belong to. The shaded
portion represents the regions that are simulated in detail.

as core frequency, while executing each region. Predictor predicts the next region to be

detailed mode if there are no prior similar regions with the same hardware state. The

Predictor decides the cluster ID of the next region by choosing the cluster ID of the

previous region with the same region marker and has the longest matching sequence.

For the regions that do not have a previous region with the same start marker or the

same history, Pac-Sim enables detailed execution for that region. Then it decides the

simulation mode of the next region by checking whether prior regions with cluster ID

and the current hardware state are simulated in detailed mode. This history is learned

online and is updated every time Pac-Sim finishes simulating a region.

To accelerate this stage for large application lengths, we further optimize our cluster-

ing algorithm to reduce its average search time complexity from O(n2) to O(n). This

is achieved by maintaining the execution history in a trie [4] data structure, with a

maximum depth of 16, which allows for more efficient search and insert operations. In

Pac-Sim, we utilize the trie data structure to maintain the execution history of the ap-

plication being simulated and quickly predict the cluster ID of the next region based on

this information.

Figure 5.5a illustrates the usage of tries to predict the cluster ID of the next region by

considering the example of a hypothetical execution sequence. Insert: The cluster ID

of the current region is inserted into the trie. In Figure 5.5a, when the online cluster-

5.3 The Pac-Sim Methodology 97

ing of the fifth region is finished, we insert the current cluster ID 2 for both branches

corresponding to the three histories: 3, 3 → 3, and 2 → 3 → 3. Search: Once Insert

of the current region is completed, the cluster ID of the next region is predicted by

searching the trie for a matching cluster ID sequence. The search operation ends when

the sequence matches one of the leaf node paths. Note that two regions having the same

marker do not necessarily mean that the regions belong to the same cluster.

Figure 5.5b shows the average accuracies of the online predictor for the benchmarks

of SPEC CPU2017 and NPB are 94% and 85%, respectively, ensuring the sampling

accuracy and performance of Pac-Sim. The accuracy of the predictor is determined

by comparing the predicted cluster ID prior to simulating the region with the actual

cluster ID obtained through clustering after simulation. Figure 5.6 shows the results

of the Predictor in clustering different regions identified by Pac-Sim simulating the ft

benchmark from the NPB benchmark suite using eight threads. We observe that the

majority of regions from each cluster are simulated in detail (shaded portions). This is

in accordance with the learning phase of our algorithm where Pac-Sim works to establish

a comprehensive understanding of the phase behavior of the application.

5.3.5 Simulation by Application Reconstruction

Previously proposed multi-threaded sampling methodologies [8, 34] rely fully on offline

analysis to determine the regions that need to be simulated in detail. Pac-Sim assumes

no prior knowledge about the nature of the workload that it is about to simulate. In-

stead, it (a) samples regions online during the simulation and (b) uses the detailed

simulation results of previous regions to estimate the performance of the current fast-

forwarded region by applying the four different methods described below successively

until convergence is reached.

i. Use the detailed performance metrics of a region that belongs to the same cluster

98 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

and has the same start marker as the current region.

ii. Use the detailed performance metrics of a region that belongs to the same cluster.

iii. Use the performance of a region with the closest BBV (θ = 1) and the same number

of active threads.

iv. Use the average performance of the regions that have the same number of active

threads.

We extrapolate the runtime Tr of a fast-forwarded region r using the region r′ by Tr =

Tr′ insnr
insnr′

, where Tr′ is the runtime of the previous region r′ identified above, and insnr

and insnr′ are the maximum instruction counts among all threads for the regions r and

r′, respectively.

Runtime Hardware Events. Pac-Sim takes into account the state of the simulated

system while estimating the performance of the fast-forwarded region. As runtime hard-

ware events can happen at any time, we do not guarantee the regions that are divided

by those events to be large enough. In such cases, we estimate the performance of these

regions using the closest previous region with the same hardware state, as these regions

are too small to be clustered. Moreover, the impact of these regions on the overall

application performance is typically negligible as the regions are too short.

5.3.6 Sampled Simulation in Parallel

Pac-Sim is primarily targeted for runtime varying scenarios using live sampling. How-

ever, for statically scheduled multi-threaded applications, Pac-Sim can support sampled

simulation in parallel, similar to checkpoint-based mechanisms, to further speed up the

sampled simulation. The workflow of Pac-Sim for parallel simulation is shown in Fig-

ure 5.7. Previous methods, like LiveSim [27] and LoopPoint [8], require offline analysis

and store checkpoints for sampled simulation. A huge amount of storage is required for

these methods, as mentioned in Section 4.2. Pac-Sim starts in emulation mode, collect-

5.3 The Pac-Sim Methodology 99

R0 ●●●R1 RiWorkload

Emulation and analysis

R0 Ri

fork

warmup

simulate

Figure 5.7: The workflow of Pac-Sim when the representative regions are simulated in
parallel. Pac-Sim starts in the emulation mode, collecting feature vectors and MTR [5]
warmup data online, and then predicts the simulation mode of the next region. For
regions predicted for detailed mode, Pac-Sim forks new processes to perform warmup
and detailed simulation.

ing feature vectors and warmup data online, and then predicts the simulation mode of

the next region. For regions predicted for detailed mode, Pac-Sim forks new processes,

which run in parallel, to perform warmup and detailed simulation. Pac-Sim reconstructs

the performance of the entire application once the whole application is emulated and

the simulation of all regions is completed.

5.3.7 Microarchitectural Warmup

One of the major challenges of sampled simulation is to choose the right warmup tech-

nique that can directly build up an accurate microarchitectural state prior to the de-

tailed simulation of a region. Methodologies like SMARTS [2] and time-based sampling

techniques [32, 33] keep functional warming enabled for the entire sampled simulation,

leading to large slowdowns. We find that the statistical warmup techniques [5, 88, 91, 92]

can reconstruct the accurate microarchitectural state of a simulated system online. We

choose the memory time-stamp record (MTR) [5] technique to be used with Pac-Sim.

MTR can rapidly collect memory reference patterns during the fast-forward mode and

reconstruct the cache state before switching to detailed simulation. In this work, we

limit the simulation infrastructure to explicit cache warming, as the smaller structures

tend to be warmed relatively quickly.

100 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

We employ a cache warmup strategy by populating the cache structures with the N most

recent unique memory accesses, where N represents the total number of cache lines being

simulated. We maintain a minimum region length of 20 million instructions to mitigate

the impact of smaller structures on sampling accuracy. While prior research explores

warming up various microarchitectural structures [86, 87], our experiments demonstrate

that focusing solely on last-level cache warmup is sufficient for high sampling accuracy.

Pac-Sim can be configured with other warmup techniques, but evaluating their effective-

ness is beyond the scope of this work.

5.4 Experimental Setup

In this section, we describe the experimental setup used to evaluate Pac-Sim. We be-

gin by providing the specifics of the simulation framework, comprising the simulator

used and details of the simulated architecture employed in our experiments. We then

describe the different workloads that are used to evaluate the performance of our method-

ology, including SPEC CPU2017 [117], PARSEC [155], and NAS Parallel Benchmarks

(NPB) [112] with different multi-threaded programming models, namely OpenMP [125]

and OmpSs [42]. The default parameters of Pac-Sim used in our experiments are listed

in Table 5.2.

Table 5.2: The default parameters of Pac-Sim used in our experiments.

Parameters Values

Min. Region Length (instructions) 20,000,000
Max. Region Length (instructions) 50,000,000
Dimensions of Online BBV 16
Max. Depth of Trie used in Predictor 16
Clustering Threshold 0.05

5.4 Experimental Setup 101

5.4.1 Simulation Tools

In this work, we use a modified version of the Sniper multi-core simulator [14, 156]

(version 7.4), which is updated to support loop-based and barrier-based region specifi-

cations in order to evaluate Pac-Sim. Sniper is a many-core simulator using high-level

abstract models and is widely used for architectural evaluation and design space explo-

ration. Note that our methodology does not utilize any features specific to the Sniper

simulator. Therefore, porting the methodology to other simulators, such as gem5 [6]

or ZSim [93], should be relatively straightforward. To demonstrate that Pac-Sim is in-

deed a microarchitecture-independent methodology, we experimentally evaluate it by

running simulations upon two different processor configurations that mimic the perfor-

mance/behavior of Intel’s Gainestown, Skylake [157], and Sunnycove [158] microarchi-

tectures using Sniper. The configuration details for each of these models are listed in

Table 5.3.

Table 5.3: The configuration parameters we used for Gainestown, Skylake, and Sun-
nycove microarchitectures on Sniper.

Component Gainestown Parameters Skylake Parameters Sunnycove Parameters

Processor 1, 8 cores 1, 8 cores 1, 8 cores
Core 2.66 GHz, 128-entry ROB 2.66 / 3.7 GHz, 224-entry ROB 3.60 GHz, 352-entry ROB
L1-I / L1-D 32 KB, 4 / 8 way, LRU 32 KB, 8 / 8 way, LRU 32 / 48 KB, 8 / 12 way, LRU
L2 cache 256 KB, 8 way, LRU 1 MB, 16 way, LRU 1.25 MB, 20 way, LRU
L3 cache 8 MB (shared), 16 way, LRU 22 MB (shared), 12 way, LRU 16 MB (shared), 16 way, LRU

To enable high-performance simulation, Pac-Sim intelligently switches among the three

simulation modes supported by Sniper, namely, fast-forward mode, cache-only mode, and

detailed simulation mode. The fast-forward mode is used to reach a particular point in an

application during simulation without enabling the performance models. The cache-only

mode performs the functional warming of the caches, whereas the detailed simulation

mode is the default simulation mode that enables the timing model for performance

Note that Gainestown is the latest microarchitecture available on Sniper simulator that has been
validated against hardware. We made modifications to the back-end of Sniper to support the contention
model and instruction latencies for Skylake and Sunnycove architectures.

102 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

estimation. For Pac-Sim, we capitalize on the split execution and timing model of

Sniper to fast-forward in the front-end of the simulator so that the simulation wall time

is further minimized.

Every time Pac-Sim switches from fast-forward to detailed simulation mode; the cache

state is reconstructed at the beginning of the region using the memory time-stamp

record (MTR) [5] technique. We implement MTR in Sniper to collect the cache line

information accessed by each Load and Store instruction during simulation, ordered in

LRU fashion per set, and then inject the requests into the cache in the correct order to

rebuild the appropriate cache state.

5.4.2 Benchmarks Used

To demonstrate the applicability of Pac-Sim, we experimentally evaluate the method-

ology using multiple benchmark suites such as (i) the SPEC CPU2017 benchmark

suite [117], (ii) the NAS Parallel Benchmarks (NPB) [112] version 3.4.2, and (iii) the

PARSEC [155] version 3.0 benchmark suite. Note that these are multi-threaded bench-

marks that synchronize frequently and share memory.

We configure these benchmarks to use two different multi-threaded programming mod-

els, namely OpenMP [125] and OmpSs [42]. OpenMP [125] provides a set of compiler

directives, library routines, and environment variables that help developers to parallelize

their code. On the other hand, OmpSs [42] extends OpenMP, and it is able to dynam-

ically manage and schedule tasks to maximize multi-threaded application performance.

We set up the multi-threaded benchmarks to use passive thread wait policy, meaning

that the threads will sleep while waiting for other threads at a synchronization point.

SPEC CPU2017 is a collection of benchmarks used for performance evaluation in com-

puter architecture research. In our experiments, we use the speed version of multi-

threaded SPEC CPU2017 benchmarks that are parallelized with OpenMP. The bench-

5.5 Evaluation 103

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

ge
om

ean
0
2
4
6
8

10

A
bs

. R
un

tim
e

Er
ro

r%

Time-Based Sampling LoopPoint Pac-Sim

Figure 5.8: A comparison of the absolute runtime prediction error using different
methodologies, namely, Time-Based Sampling, LoopPoint, and Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. On average, Pac-Sim achieves better
accuracy compared to Time-Based Sampling and LoopPoint.

marks are compiled using GCC 6.4.0 and GFortran with the -O3 compiler flag for x86-64

architecture. We configure these benchmarks to run with eight threads and evaluate

them using the train input set. NAS Parallel Benchmarks (NPB) [112] is another set of

benchmarks widely used to evaluate the performance of highly parallel systems in com-

puter architecture. The reference implementations of these benchmarks are available

in the two most commonly used programming models, i.e., MPI and OpenMP. In our

experiments, we use the OpenMP-based implementation with input class A and gener-

ate the binaries using icc compiler (with -O2 flag) as part of the Intel oneAPI (version

2022.0.2) toolkit. We also present experimental evaluations of Pac-Sim using PARSEC,

which is another standard benchmark suite consisting of computationally intensive ap-

plications designed to facilitate the study of multi-core systems with shared memory.

PARSEC implementations are available in both OpenMP and OmpSs [159] versions. In

our experiments, we use both these versions with the simlarge input set.

5.5 Evaluation

In this section, we first present a comprehensive evaluation of Pac-Sim, comparing its

efficacy with the current state-of-the-art. Additionally, we provide experimental evi-

104 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

ge
om

ean

102

103

Pa
ra

lle
l S

pe
ed

up
LoopPoint Pac-Sim

(a) Parallel Speedup

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

ge
om

ean
100

101

102

Se
ria

l S
pe

ed
up

Time-Based Sampling LoopPoint Pac-Sim

(b) Serial Speedup

Figure 5.9: The parallel and serial speedups achieved using Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. For speedup calculations, the simulation
walltime corresponding to Pac-Sim includes both online analysis and simulation time,
whereas, for LoopPoint, we consider only the checkpoint simulation time, excluding the
time required for offline profiling and checkpoint generation. Pac-Sim outperforms both
Time-Based Sampling and LoopPoint in terms of speedup achieved. Note that Time-
Based Sampling techniques are not suitable for sampled simulation in parallel.

bt cg ep ft is lu mg sp ua geomean
0
2
4
6
8

10
12

L2
 M

PK
I a

bs
. d

iff

Figure 5.10: The absolute differences in predicting L2 cache misses per kilo instructions
(MPKI) using Pac-Sim as compared to the full detailed simulation. In this experiment,
we use the NPB benchmarks with class A inputs running eight threads. The geometric
mean of the absolute differences in predicting L2 MPKI is 0.23.

dence showing that Pac-Sim is indeed a hardware-independent methodology. Finally,

we present case studies that demonstrate the applicability and effectiveness of Pac-Sim

in estimating workload performance in dynamic, multi-threaded hardware and software

environments. Note that, throughout this chapter, the term runtime refers to the sim-

ulated runtime of the application, whereas the term wall-time refers to the actual time

taken by the simulator to finish the run.

Evaluation metrics. In order to evaluate the effectiveness of any simulation method-

ology, it is crucial to quantitatively measure its performance in terms of two critical

metrics: accuracy and speedup. In our experiments, we define these metrics in the fol-

5.5 Evaluation 105

bt cg ep ft is lu mg sp ua
0
2
4
6
8

10
A

bs
. R

un
tim

e
Er

ro
r%

Gainestown
8 threads 1 thread

Skylake
8 threads 1 thread

Sunnycove
8 threads 1 thread

(a) Accuracy

bt cg ep ft is lu mg sp ua

101

102

Sp
ee

du
p

Gainestown
8 threads 1 thread

Skylake
8 threads 1 thread

Sunnycove
8 threads 1 thread

(b) Serial Speedup

Figure 5.11: The accuracy and serial speedup achieved for Pac-Sim methodology when
simulated using three different microarchitectures, namely, Gainestown, Skylake, and
Sunnycove, for NPB benchmarks with class A inputs running eight threads and one
thread.

lowing manner:

Accuracy: We assess the accuracy of our proposed methodology by comparing the sim-

ulation runtime obtained from the full simulation and the sampled simulation in terms

of absolute runtime prediction error ∆time, which is defined as

∆time = |Tfull − Tsample|
Tfull

,

where Tfull represents the simulation runtime obtained from the full run, and Tsample

represents the simulation runtime extrapolated from the sampled simulation. It is im-

portant to note that in our evaluation, we use the runtime (execution time as inferred

from simulation) of the application as the performance metric to measure the accuracy of

sampling. This is because time-per-program is the gold-standard performance measure,

and IPC is not a valid performance metric for multi-threaded applications [31].

106 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Speedup: In our experiments, we calculate the speedup by taking the ratio of the wall-

clock time for the full simulation to that of the sampled simulation and the average

speedup by computing the geometric mean of the speedups across all benchmarks. Se-

rial speedup is defined as the speedup achieved when all representative regions are sim-

ulated sequentially, while parallel speedup is obtained when the representative regions

are simulated in parallel, assuming infinite resources.

5.5.1 Comparison with the State-of-the-Art

In this section, we evaluate the performance of Pac-Sim in comparison to the state-

of-the-art profile-driven sampled simulation methodology, LoopPoint [8]. While several

other profile-driven methodologies exist, LoopPoint provides the benefit of being appli-

cable across a variety of application and synchronization types. It has also been shown

to outperform other multithreaded sampled simulation methodologies (such as Barri-

erPoint) in terms of speedup and accuracy, thus serving as a strong baseline for our

evaluations. We also compare Pac-Sim with Time-Based Sampling [32, 33] techniques,

which repeatedly alternate between detailed simulation and fast-forwarding of regions.

For a fair comparison, we adopt Pac-Sim’s approach of injecting the warmup state at the

beginning of each detailed simulation region. We now report the results of our simula-

tion experiments evaluating and comparing the performance of these two methodologies

using the SPEC CPU2017 benchmarks.

Accuracy. Figure 5.8 shows a comparison of absolute runtime prediction errors for Pac-

Sim, Time-Based Sampling, and LoopPoint obtained for the 8-threaded SPEC CPU2017

benchmarks using train inputs. Our analysis reveals that, in most cases, Pac-Sim per-

forms comparably with LoopPoint in predicting the runtime of the applications, with the

individual errors differing by no more than 2 to 3%. The relatively higher errors for some

applications, such as 619.lbm_s.1, are because Pac-Sim relies on online extrapolation

to estimate application performance using the limited profile data that is available from

5.5 Evaluation 107

regions that have already been simulated. Whereas methodologies like LoopPoint rely

on offline profiling and, therefore, utilize the information about the whole application.

We also evaluate the accuracy of Pac-Sim to determine the L2 cache misses per kilo

instructions (MPKI), as shown in Figure 5.10. The final results show that the average

absolute difference of MPKI for all benchmarks evaluated is 0.23, demonstrating Pac-

Sim accurately extrapolates microarchitectural metrics of the whole application from the

selected samples.

Speedup. Figure 5.9 shows the speedup comparison of Pac-Sim, Time-Based Sam-

pling, and LoopPoint for the SPEC CPU2017 benchmarks using train inputs running

eight threads. Figure 5.9a shows the parallel speedup for which Pac-Sim outperforms

LoopPoint in most cases (7 out of 12 benchmarks). The primary reason for this is that

Pac-Sim uses smaller regions as compared to LoopPoint. Although Pac-Sim requires

emulation of the entire application, the online analysis overhead is minimized, and there-

fore, the average parallel speedup for SPEC CPU2017 benchmarks (train inputs) using

Pac-Sim is 210.3×, which is larger than that obtained for LoopPoint (150.97×).

Figure 5.9b shows the serial speedup, and we observe Pac-Sim outperforms LoopPoint

in most cases, attaining a maximum serial speedup of 123.32×. Specifically, Pac-Sim

outperforms LoopPoint by 1.8× and 1.4× for the serial and parallel speedup, respec-

tively. While the online analysis can introduce some runtime overheads, the performance

advantages of Pac-Sim seem to outweigh these overheads in most cases. We observe that

the performance of Pac-Sim surpasses that of Time-Based Sampling across all evaluated

benchmarks. This is because Pac-Sim selects regions for detailed simulation through

online learning, in contrast to Time-Based Sampling. Furthermore, the use of program

constructs like barriers and loops in Pac-Sim for region selection enables identifying

repetitive program behavior in multi-threaded workloads. However, there are some

cases where LoopPoint performs better than Pac-Sim, such as for 627.cam4_s.1 and

108 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

ge
om

ean

105

106

107

108

W
al

lti
m

e
(s

)
1 day

1 week
1 month

1 year

Detailed Sim Pac-Sim Pac-Sim (parallel)

Figure 5.12: A comparison of the estimated walltime for fully detailed simulation
and sampled simulation using the serial and parallel versions of Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using ref inputs. The estimated walltime includes the time
required for online analysis, warmup, and simulation.

628.pop2_s.1 benchmarks in Figure 5.9b. This is mainly because Pac-Sim uses a small

clustering threshold (0.05) for the online clustering in order to maintain higher accuracy,

compared with Time-Based sampling and LoopPoint.

Efficacy in Evaluating Realistic Workloads. The full detailed simulation of SPEC

CPU2017 benchmarks with reference inputs takes an extremely long time – about a

year on average using multi-core simulators like Sniper. Instead, we estimate their sim-

ulation walltime by considering the instruction count of the benchmark using reference

inputs along with the average simulation rate of the benchmark using train inputs. The

walltime of Pac-Sim includes the time required for online analysis and emulation of the

entire workload along with the time for detailed simulation of the representative re-

gions. Figure 5.12 shows that Pac-Sim takes less than a week, on average, to run the

entire application sequentially, while the parallel version of Pac-Sim takes about 1.8 days

on average. In experiments where the microarchitecture structures like cache size are

adjusted or when the application itself undergoes instruction-level modifications, it is

necessary to regenerate the checkpoints. In such cases, Pac-Sim is more appropriate as

LoopPoint takes 6.2 days on average (shown in Figure 5.2) to complete its preprocessing

before simulation.

5.5 Evaluation 109

Microarchitecture-agnostic sampling. In addition to achieving high accuracy and

speedups, Pac-Sim also provides the advantage of being a microarchitecture-independent

methodology. We experimentally demonstrate this by evaluating our methodology with

two different processor configurations, namely the Gainestown and Skylake microarchi-

tectures, for the NPB benchmarks that run using one thread and eight threads. The

accuracy and speedup numbers obtained in our experiments are plotted in Figure 5.11a

and Figure 5.11b, respectively. From Figure 5.11a, we can observe that the absolute

runtime errors estimated by Pac-Sim for all NPB applications are quite low (all under

8%) and are similar for both these processor configurations (differing by 5% at most).

Moreover, the speedups obtained for both configurations are similar for most bench-

marks, as observed in Figure 5.11b. Hence, the choice of a target microarchitecture for

evaluation does not affect the efficacy of Pac-Sim.

Wall-time Distribution. We show the time spent by Pac-Sim in different stages of

sampled simulation. Figure 5.13 shows the average time spent in the online analysis

stage for NPB (class A inputs) and SPEC CPU2017 (train inputs) benchmarks is 7.88%

and 11.20%, respectively. This is the result of the optimizations described in Section 4.3,

which are applied to the analysis part. Moreover, Pac-Sim spends 8.25% and 16.00%

of the execution time on warmup for NPB and SPEC CPU2017 benchmarks, respec-

tively. This is because Pac-Sim needs to reconstruct the memory access patterns at the

beginning of the detailed simulation of a region. Note that Pac-Sim reduces the time

spent in both profiling and analysis of the benchmarks significantly as compared to prior

profile-driven methodologies for sampled simulation.

Memory Overhead. The memory overhead of Pac-Sim is minimal (no disk access)

and allocated once per simulation. For the online analysis, Pac-Sim needs to record

the BBV information of the previously simulated regions. The space complexity of the

online analysis is O
(

insnfull

region_length

)
, where insnfull is the total dynamic instructions

110 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

0 20 40 60 80 100
Time Spent (%)

PARSEC.simlarge
NPB.A

SPEC.train

Detail Fast-forward Warmup Analysis

Figure 5.13: The graph shows the percentage of time that Pac-Sim spends at each phase
during the sampled simulation of each benchmark suite (average across all benchmarks).
The Analysis component includes online marker detection, region profiling, clustering,
and prediction.

executed by the application and region_length is the average length (size) of the regions

identified. The MTR warmup injection technique keeps counters for each cache line

accessed (num_cache_lines), and the space complexity is O(num_cache_lines).

5.5.2 Case Studies

We showcase the versatility of Pac-Sim through several compelling case studies. Firstly,

we demonstrate that our methodology remains agnostic to dynamic thread scheduling

decisions made during runtime, highlighting its robustness and adaptability. Next, we

provide examples of how Pac-Sim operates seamlessly in the presence of various runtime

hardware events, further cementing its reliability. Finally, we exhibit the applicability

of the proposed methodology in hardware-software co-design studies, showcasing its

potential to facilitate more efficient and effective design processes.

5.5.2.1 Dynamically Scheduled Software

The advent of multi-core and many-core architectures has necessitated the efficient par-

allel execution of dynamically scheduled multi-threaded applications to maximize system

performance. However, the non-determinism resulting from the execution of such ap-

plications on multi-core platforms often leads to notable performance variability across

multiple runs. This variability can be attributed to software-level factors such as dy-

5.5 Evaluation 111

namic job scheduling by the operating system, thread migration between cores, load

balancing optimizations, and contention for shared resources at runtime.

Table 5.4: Table shows the IPC of freqmine benchmark from the PARSEC benchmark
suite using the simlarge input for threads 0 through 7. Pac-Sim shows the details of
dynamically scheduled software whose IPC and thread mapping differ across two runs.

Thread ID 0 1 2 3 4 5 6 7 Aggr.

IPCrun1 0.15 0.09 1.75 0.43 0.07 0.07 0.10 0.09 2.75
IPCrun2 0.15 0.09 1.76 0.07 0.44 0.07 0.09 0.10 2.76

Table 5.4 illustrates the thread-level differences in terms of instructions per cycle (IPC)

for two different runs of the OpenMP-parallelized freqmine application from the PAR-

SEC benchmark suite. There are variations in the per-thread IPCs between the two runs,

particularly for thread IDs 3 and 4. To investigate the impact of these variations on con-

ventionally used sampling techniques, we conducted two independent profiling runs of

freqmine using LoopPoint. The experimental results showed significant variability, with

14% of the regions clustered differently between runs. This presents a challenge for sam-

pled simulation, which relies on profiling data from a prior execution to guide simulation

in subsequent runs. Dynamically scheduled applications, by nature, have profiling data

that fluctuates across executions. To address this challenge caused by runtime variabil-

ity, Pac-Sim performs online profiling and simulation within the same run. This allows

Pac-Sim to capture any performance variations that might occur during execution.

To demonstrate the effectiveness of Pac-Sim in this regard, we now present an experimen-

tal study of dynamically scheduled multi-threaded versions of PARSEC with simlarge

inputs and NPB with class A inputs. While the per-thread behavior varies for dynami-

cally scheduled applications, the global execution time and global IPC remain consistent

across multiple runs. In Table 5.4, we observe that while there are some variations in

per-thread behavior, the aggregate IPCs across the two runs remain nearly unchanged.

Figure 5.14 demonstrates the average runtime prediction errors of Pac-Sim simulating

112 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

bla
ck

sch
ole

s

bo
dy

tra
ck

fre
qm

ine

bla
ck

sch
ole

s

bo
dy

tra
ck

fre
qm

ine bt cg ep ft is lu mg sp ua
0

5

10

A
bs

. R
un

tim
e

Er
ro

r%

OmpSs OpenMP

Figure 5.14: Figure shows the average error rates (from five different runs) and error
bars in predicting the runtime of dynamically scheduled benchmarks. We use PARSEC
benchmarks with the simlarge input using OmpSs and OpenMP, and NPB benchmarks
with class A inputs using OpenMP runtime.

dynamically scheduled multi-threaded applications. We run the benchmarks multiple

times in full detailed mode and using Pac-Sim. The errors are calculated by compar-

ing the runtime obtained using Pac-Sim with the average runtime obtained from the full

detailed simulations. The results show that Pac-Sim achieves a very low error in predict-

ing the runtime of dynamically scheduled software (3.81% on average). The benchmark,

freqmine, which shows the largest IPC variation (without spinloops) maintains an aver-

age error of 11.43%. Moreover, Pac-Sim demonstrates speedups of up to 43.96× (6.29×

on average) for all dynamically scheduled benchmarks.

5.5.2.2 Dynamic Hardware Events

Dynamic event-based hardware optimizations help improve performance gains and en-

ergy efficiency in modern architectures. DVFS [35, 36, 37] is one of the most widely

employed dynamic hardware event-based optimization techniques. It monitors core fre-

quencies and load variations in order to match the system power consumption with the

required level of performance by triggering voltage and frequency optimizations at run-

time. These optimizations may lead to a diverse range of dynamic hardware states (i.e.,

core frequency, power configurations) over a given run, consequently resulting in a signif-

icant degree of performance variability for a given workload across different executions.

5.5 Evaluation 113

Pac-Sim deals with this performance variability by monitoring the simulated hardware

events during execution. While prior sampled simulation methodologies can be modified

to support dynamic hardware events triggered only at region boundaries (to maintain

consistent hardware state within a region), Pac-Sim allows hardware events at any point

during the application execution. Each time an event occurs, Pac-Sim triggers a new

region to ensure hardware state consistency within that region. The predictor then

speculates the cluster ID of the next region and checks the execution history to determine

whether similar regions (i.e., regions with the same cluster ID and hardware state) were

previously encountered. If a match is found, the region is fast-forwarded; otherwise, a

detailed simulation is triggered.

We now present an experimental study demonstrating the effectiveness of Pac-Sim in

handling the variability caused by dynamic hardware events by specifically considering

the case of DVFS-optimized workloads. In our experiments, we evaluate the performance

of the benchmarks by comparing the results of Pac-Sim with the baseline while changing

the frequency at predetermined intervals; however, just like in actual DVFS-optimized

executions, the information on the frequency changes is not available to the simulator a

priori. In order to evaluate the performance of Pac-Sim, we consider a DVFS scenario in

which the processor frequency { switches among a fixed range of values, i.e., { ∈ {1.33

GHz, 2.00 GHz, 2.66 GHz} as shown in Figure 5.15c.

For this scenario, we measure the aggregate giga/billion instructions per second (GIPS)

values obtained from both the full detailed simulation and Pac-Sim over the entire ex-

ecution. The findings of our experiment are presented in Figure 5.15. We observe that

the GIPS values obtained from both the full simulation (Figure 5.15a) and Pac-Sim

(Figure 5.15b) exhibit a great deal of similarity, indicating Pac-Sim’s effectiveness in

estimating the performance of a dynamically optimized workload with a high level of

accuracy. Furthermore, our findings reveal that Pac-Sim simulates only a small fraction

114 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

5
10
15
20

G
IP

S

(a) Aggregate GIPS from full detail simulation

5
10
15
20

G
IP

S

(b) Reconstructed GIPS using Pac-Sim

0 10 20 30 40 50 60 70
Instructions Executed (in Billions)

1.5
2.0
2.5

Fr
eq

 (G
H

z)

(c) CPU Frequency

Figure 5.15: The aggregate giga (billion) instructions per second (GIPS) of the full run
(a), reconstructed GIPS using Pac-Sim (b), and the varying CPU frequency for all CPUs
(c) 644.nab_s.1 benchmark with train inputs running 8 threads. The shaded regions
in (b) represent the regions simulated in detail. The figures share the same x-axis.

bt cg ep ft is lu mg sp ua
0.0
0.5
1.0
1.5
2.0

Pe
rf

or
m

an
ce

 D
iff

Full Detailed Sim
w/o SSE2 w/ SSE2

Pac-Sim
w/o SSE2 w/ SSE2

Figure 5.16: The figure shows the absolute difference in performance (in terms of
runtime) for NPB benchmarks using class A inputs and 8 threads with (w/) and without
(w/o) SSE2 simulated in detailed mode and with Pac-Sim.

of the entire application in detail (depicted by shaded regions in Figure 5.15b). No-

tably, most of the detailed simulation occurs either at points of change in the phase

behavior of the application or hardware states. This demonstrates that Pac-Sim can use

this information to identify a minimal representative subset for applications using online

analysis.

5.5 Evaluation 115

5.5.2.3 Hardware-Software Co-design

Hardware-software co-design is an emerging field of study that optimizes the system per-

formance by concurrently designing the compiler and hardware components of a system

to exploit the synergy between the two. Prior works [160, 161, 162] have investigated

several directions in this context. To identify the most effective strategies, hardware-

software co-design research relies on fast and accurate architectural simulation method-

ologies to explore the design space efficiently. However, among existing methodologies,

the profile-driven methodologies [20, 34] incur significant profiling and preprocessing

costs, as shown in Figure 5.2, whereas the statistical sampling methodologies [2, 146]

(which do not rely on preprocessing) have low speedups.

Pac-Sim addresses these issues by sampling and analyzing the regions online. Thus,

it incurs no additional profiling cost if new compilers are used or new applications are

generated, enabling fast and efficient exploration of hardware-software co-design space.

To demonstrate the effectiveness of Pac-Sim in this regard, we now present a perfor-

mance evaluation study of the NPB benchmarks under different compiler optimization

techniques. We study the impact of SIMD (Single Instruction, Multiple Data) opti-

mizations on the generated binaries using both Pac-Sim and full detailed simulations.

SIMD-enabled processors are equipped with special-purpose registers that can simul-

taneously load multiple machine words and perform operations on them in parallel in

order to improve processor performance. For instance, the Streaming SIMD Extensions

2 (SSE2) instruction set uses 128-bit XMM registers to process packed data elements at

once.

In our experiments, we measure the performance improvement (in terms of runtime)

obtained by enabling SSE2 and compare it against the baseline. The results of our

simulations are presented in Figure 5.16. We observe that the average difference in

the performance improvements obtained from full detailed mode and Pac-Sim is 3.65%.

116 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Specifically, Pac-Sim reveals the performance effects of SIMD instructions. For example,

some benchmarks achieve a significant speedup over the baseline as these applications

meet the icc vectorization criteria [163]. ft calculates a 3D fast Fourier transform, and

its innermost loop consists of multiply-add statements with contiguous memory accesses

and no data dependency. On the other hand, is, which uses the quick sort algorithm, is

hard to vectorize. The SIMD overheads resulting from register transfer costs exacerbate

the overall application performance.

5.6 Related Work

We have discussed the most relevant previous works in Section 4.2. Sampled simulation

has been an active research area for several decades, and several techniques were pro-

posed [2, 8, 20, 27, 30, 32, 33, 34, 43, 78, 80, 164] in this direction for different workload

classes primarily for the reduction of simulation time and resources. Analytical modeling

is yet another solution to evaluate a complex workload quickly. Prior works proposed

analytical models to derive the performance of processors [84, 85], cache miss rates [86],

branch miss rates [87], DVFS performance [165], etc. However, analytical performance

modeling can be limited in supporting new designs, requiring new models for each.

5.7 Conclusion

In this work, we propose a novel methodology, Pac-Sim, that allows for the sampled

simulation of dynamic software that responds to workload and run-time execution con-

ditions. Pac-Sim is the first, to the best of our knowledge, to propose a sampling solution

that simulates these dynamic conditions in both a fast (up to 523.5× speedup, 210.3×

on average) and accurate way (average errors of 1.63% and 3.81% for statically and

dynamically scheduled benchmarks, respectively).

Chapter 6
XPU-Point: Simulator-Agnostic Sample
Selection Methodology for Heterogeneous
CPU-GPU Applications

Reality is merely an illusion, albeit a very persistent one.

— Albert Einstein

The end of Dennard scaling has driven chip design towards multi-core and heterogeneous
architectures. As multi-core architectures are reaching their scaling limits, the focus has been
pivoted to heterogeneous architectures. However, performance evaluation of heterogeneous
systems using full-program simulations is prohibitively slow. We introduce XPU-Point,
a novel methodology to identify representative regions within heterogeneous CPU-GPU
workloads, enabling fast and accurate performance evaluation through sampled simulations.

6.1 Introduction

Computation exists everywhere in this era, spanning from large-scale systems to low-

power devices and mobile CPUs. There has been a profound increase in the demand

118XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

XPU-Pin

Pin tool (x86 CPU)

GTPin tool
(Intel GPU)

NVBit tool
(NVIDIA GPU)

x-Instrument tool
(x-Accelerator) …

Event callbacks

Figure 6.1: A high-level schematic of XPU-Pin. The x86 CPU instrumentation tool Pin
interacts with GPU instrumentation tools (like GTPin and NVBit) for event-based call-
backs. Integration with similar tools for other hardware components (x=TPUs, NPUs,
accelerators, etc.) is feasible. The simulation phase (not shown), which is performed
using a variety of tools, is handled separately.

for high-performance computing (HPC) resources in recent years [166]. However, the

limitations of multi-core architectures to scale due to the associated power and thermal

constraints (power wall) restricts their ability to deliver significant performance improve-

ments [167, 168]. This has resulted in a shift toward domain-specific architectures and

accelerators like GPUs [169], TPUs [170], and FPGAs [171]. Embracing heterogene-

ity in architectures is one way forward for continued performance improvements [12]

to meet these growing computational demands. The use of a combination of architec-

tures is needed to continue to scale the performance of future systems [172], to achieve

accelerator-level parallelism [173].

The prevalence of CPU-GPU architectures in heterogeneous computing arises from their

ability to address the evolving demands of modern workloads, coupled with their well-

established programming models and their ability to exploit parallelism at a massive

scale. GPUs have emerged as the most widely used general-purpose accelerators in mod-

ern data centers [53] and supercomputers [54] that accelerate massively parallel big data

analysis [55, 56] and machine learning [57, 58] workloads. While previous works have

investigated characterizing workloads that consist of CPU components [2, 20, 30, 32, 34]

and GPU [45, 46, 59, 60] components independently, as well as their comparative anal-

yses [61], hybrid solutions that support analysis and workload reduction, like sampling,

for multiple types of heterogeneous workloads, from CPUs, GPUs, and even custom

6.1 Introduction 119

50
5.l

bm
_t

51
3.s

om
a_

t

51
8.t

eal
eaf

_t

51
9.c

lvl
eaf

_t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

BERT_BF16
_im

BERT_FP16
_im

BERT_FP32
_im

BERT_BF16
_ts

BERT_FP16
_ts

BERT_FP32
_ts

ResN
et5

0_
FP32

_im

ResN
et5

0_
FP32

_alt
_im

ResN
et5

0_
FP32

_ts

IN
T8_

Qua
nti

zat
ion

100

103

106

109

minute

hour
day
month
year
decade
century

W
al

lT
im

e
(s

)
Native Profiling Sampled Sim Full Sim

Figure 6.2: The wall time (in seconds) for evaluating realistic heterogeneous CPU-GPU
workloads such as SPEChpc 2021 benchmarks (tiny set) using ref inputs and PyTorch
Inference runs. Benchmarks were evaluated in (a) native run, (b) profiling using XPU-
Point, (c) parallel simulation of the representative regions identified using XPU-Point
(mean wall time with error bars indicating the shortest- and longest-running regions),
and (d) full-detailed simulation. The experiments are conducted on machines that use
Intel Sapphire Rapids CPU and Intel Ponte Vecchio GPU. The simulation wall times
are estimated using the simulation rate of gem5 [6] and Accel-Sim [7]. im=Imperative,
ts=TorchScript.

hardware accelerators (like FPGAs), have not yet been identified. Given the importance

of these workloads, from HPC systems to data center use, simulation of heterogeneous

workloads is key to understanding the interactions between compute components and

how these interactions can affect overall runtime performance.

The growing significance of heterogeneous computing architectures necessitates a refined

approach to performance analysis. While GPUs have become indispensable for accelerat-

ing workloads like AI training and inference, the CPU plays a critical role in scheduling

tasks and managing memory. A performance bottleneck within the CPU can have a

cascading effect, given Amdahl’s law [174], impacting overall system performance. Prior

works [175] discuss the shortcomings of traditional GPU-centric analysis methods that

overlook the role of the CPU in data movement and task management. Sampled simu-

120XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

lation techniques, while prevalent for independent CPU and GPU performance analysis,

suffer limitations when applied to tightly coupled CPU-GPU systems. Such simulations

or performance analyses often neglect the effects of inter-core communication and cache

coherency, that significantly impact the microarchitectural state. Additionally, they may

not accurately capture synchronization behavior, leading to unrealistic execution order

and resource usage.

Existing instrumentation and analysis tools are insufficient to capture the interactions

between CPU and GPU in heterogeneous applications. While there are instrumentation

and analysis frameworks for CPUs, such as Pin [116] or DynamoRIO [176, 177] for x86

programs, and for GPUs, such as GTPin [81] for Intel GPU programs and NVBit [178] for

NVIDIA GPU programs, there is no framework for co-analysis of CPU and GPU code.

In this chapter, we introduce XPU-Pin, a novel framework designed to bridge this gap

by enabling simultaneous analysis of both CPU (x86) and GPU (Intel, NVIDIA) code.

XPU-Pin has a Pin-based driver that loads the GPU tool library (GTPin or NVBit)

explicitly and triggers it, as shown in Figure 6.1. CPU and GPU analyses can thus

be integrated within the same environment, simplifying development and allowing for

a unified and more accurate analysis. Additionally, the GPU tool can trigger functions

registered by the driver on certain GPU events, such as the start or end of a GPU kernel.

The CPU and GPU tools can thus coordinate their analysis around GPU events.

Evaluating the performance of large workloads on heterogeneous systems presents sig-

nificant challenges due to long simulation times, which can take several months or years,

as illustrated in Figure 6.2. Training large language models (LLMs) with multi-billion

parameters, like GPT-4 [179], LLAMA2 [180], or Gemini [181], can take several months,

while the inference runs may take several seconds even on powerful hardware [182, 183].

Simulation serves as a powerful tool for architects to explore potential hardware improve-

ments that suit certain workload types. However, simulating such workloads in their

6.1 Introduction 121

entirety can be prohibitively long. Workload sampling stands as a popular technique for

CPUs [2, 8, 20, 32, 33] and GPUs [16, 45, 46, 59], presenting a compelling solution by

selecting a representative subset of the workload for detailed simulation. This approach

delivers substantial speedups while maintaining accurate performance measurements.

However, there are currently no established sampling solutions that apply to hetero-

geneous workloads. We build on XPU-Pin to propose XPU-Point, a unified sampling

solution for heterogeneous workloads that can accurately build a representative sample

for the fast and accurate performance analysis of the workloads. Through XPU-Point, we

propose a comprehensive methodology across a broad spectrum of real-world workloads,

from scientific simulations to artificial intelligence. This enables computer architects and

performance researchers to quickly estimate the performance of long-running, heteroge-

neous workloads using sampled simulation on existing simulators [97, 135] which was

not possible before.

The accuracy of the XPU-Point methodology is assessed (sample validation) based on

sampling errors – the difference between the full workload performance and the per-

formance extrapolated from the samples. Traditionally, sample validation is performed

based on a detailed, and slow, timing simulation platform. We have identified two is-

sues with simulation-based sample validation (i) it assumes that an accurate simulator

for the target system is available which is not the case in the early stages of system

design and (ii) it requires simulation of the entire test program to get the full workload

performance which can be impractically slow as illustrated in Figure 6.2. We instead

separate sample validation from simulation and perform the validation on real hardware

with XPU-Timer (Figure 6.3). Using XPU-Timer, sample validation can be performed

at near-native speed, whereas simulation-based validation can be significantly slower.

The high-level overview of the entire framework is shown in Figure 6.3. The focus

of XPU-Point methodology is on selecting samples for simulation and validating those

122XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

Heterogeneous
Workload

XPU-Profiler
XPU-Pin

Full
Performance

Extrapolated
PerformanceSampling Error

XPU-Timer
XPU-Pin

XPU-Timer
XPU-Pin

Weighted
Performance

XPU
Regions

Sample Validation

Sample Selection

Figure 6.3: The end-to-end workflow of the XPU-Point methodology to sample het-
erogeneous workloads. XPU-Point uses XPU-Profiler to capture execution profiles of a
heterogeneous workload. Once the representative regions (samples) are identified for the
workload, their performance, as estimated by XPU-Timer (or a heterogeneous simula-
tor), is extrapolated and compared with that of the full workload to validate the sample.

samples in a simulator-independent manner. The samples can be used to drive simulation

using the platform of choice. Leveraging XPU-Point samples for simulation is left for

future work.

In this work, we make the following contributions:

i. We propose XPU-Point, a methodology that goes beyond prior workload sampling

techniques to be the first to allow for the support of heterogeneous applications.

This enables researchers to conduct a unified and accurate performance evaluation

of large-scale applications through sampled simulation.

ii. We introduce XPU-Pin, an instrumentation framework that we developed in this

work to evaluate heterogeneous CPU-GPU applications. XPU-Point is built upon

XPU-Pin, and supports both Intel- and NVIDIA-based CPU-GPU workloads.

iii. We experimentally assess the efficacy of XPU-Point in terms of sampling accuracy

and potential simulation speedup of CPU-GPU workloads on various hardware

platforms using our XPU-Timer tool instead of using a simulator.We have open-

6.2 XPU-Pin Framework 123

sourced the XPU-Pin framework and the XPU-Point project on GitHub [184].

iv. We extensively evaluate XPU-Point across several heterogeneous workloads, in-

cluding industry-standard benchmarks such as SPECaccel 2023, SPEChpc 2021,

AutoDock, GROMACS, and PyTorch inference demonstrating high accuracy (ab-

solute sampling errors less than 5%).

The rest of the chapter is organized as follows. In Section 6.2 and Section 6.3, we discuss

the background and challenges involved in the performance evaluation of heterogeneous

workloads on modern architectures. Section 6.4 presents the XPU-Point methodology in

detail. We then describe the experimental infrastructure in Section 6.5, followed by an

extensive evaluation of XPU-Point in Section 6.6 along with case studies to demonstrate

the applicability of the proposed methodology. Finally, we present the related work in

Section 6.7 and conclude the chapter in Section 6.8.

6.2 XPU-Pin Framework

In this section, we explore prominent solutions for binary instrumentation, along with

insights into programming models designed for heterogeneous workloads. We also delve

into the development of XPU-Pin, a tool we specifically built to facilitate the co-analysis

of CPU-GPU heterogeneous workloads.

6.2.1 Instrumentation and Analysis Tools

6.2.1.1 Intel Pin

Pin [116] is an x86 binary instrumentation framework that allows users to write Pin

tools, which are C/C++ programs specifying analysis to be done at certain points (for

example, every instruction, basic block, etc.) in program execution. Pin works in two

modes, namely JIT mode and Probe mode. JIT mode works by loading an input x86

binary in memory and translating (just-in-time) its x86 code into x86 code to another

124XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

region of memory called the code cache. The translation overhead in the JIT mode

can result in a 40% slowdown [185] in performance even without instrumentation taking

place. The slowdown and performance perturbation can be exacerbated further by the

additional analysis routines. In contrast to JIT mode, probe mode works by loading an

input x86 binary in memory and patching the code at certain probe points as specified

by the Pin tool. Probe mode does not translate the code, but instead redirects the code

inline to analysis routines. In general, Probe mode demonstrates lower overheads at the

cost of programmer effort.

6.2.1.2 Intel GTPin

Intel’s GPU instrumentation framework, GTPin [81], works by inserting analysis code

into the GPU program via GTPintools as shared libraries. The Intel Graphics compiler

generates code for the specific Intel GPUs at run time. GTPin then dynamically adds

extra code specified by a GTPintool into the generated code. This modified code is

then offloaded to the GPU and runs there. Any results created by the extra GTPintool

code are stored in a memory buffer, and that buffer is processed on the CPU at various

synchronization points.

6.2.1.3 NVIDIA NVBit

NVBit [178] is a dynamic binary instrumentation framework for NVIDIA GPUs that

works on the Linux operating system. It provides a high-level Application Program-

mer’s Interface (API) for writing instrumentation tools as Linux-shared libraries. A tool

library is injected in a GPU application using the LD_PRELOAD [186] feature in Linux.

NVBit tools can inspect and modify the NVIDIA GPU assembly code (SASS) of GPU

applications without requiring recompilation.

6.2 XPU-Pin Framework 125

6.2.1.4 Implementation of XPU-Pin Framework

Existing tools mainly focus on either CPU or GPU components of an application due to

the limitations of traditional instrumentation tools. Intel Pin [116] and DynamoRIO [176,

177] are used to analyze CPU applications, while GTPin [81] and NVBit [178] are used

for GPU kernel analysis. In contrast, our newly designed framework, XPU-Pin, allows

users to analyze and instrument heterogeneous CPU-GPU workloads with a single tool.

XPU-Pin starts as an x86 analysis tool based on Pin (either JIT or Probe mode) and

then invokes the GPU analysis shared library. The straightforward approach of linking

in a GPU analysis library is not an option, as Pin requires all the libraries a Pin tool

uses to be built with a special Pin runtime provided. Modifying GPU analysis tools

to use special Pin runtime can be restrictive and not practical with a large number of

legacy GPU analysis tools. For Intel GPUs, an alternative to linking in a GTPin tool

library is to explicitly load it at runtime from the driver Pin tool. However, this re-

quires using dlopen() from the the application’s runtime instead of Pin runtime. For

NVIDIA GPUs, the NVBit analysis framework utilizes the LD_PRELOAD feature to

inject itself into the application. This mechanism remains effective when combined with

x86 Pin. CPU and GPU analyses can thus be integrated within the same environment,

simplifying development and allowing for a unified and more accurate analysis.

Legacy GPU analysis tools can thus be executed unmodified with x86 CPU analysis

using Pin (either using dlopen or LD_PRELOAD). For coordinated CPU and GPU

analysis, GPU analysis tools can implement an optional callback handler registration.

When the Pin driver explicitly loads the GPU analysis library, it calls this registered

handler. The GPU tool then uses this handler to obtain and store pointers to Pin driver

functions, which it can later invoke in response to specific GPU events (like kernel start

and end). This mechanism enables CPU and GPU tools to synchronize their analysis

based on these GPU events. Figure 6.4 shows the control flow for an XPU-Pin tool

126XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

xpu-pin-driver.so

dl_open (GPUAnalysis.so)
[optional]
GPUAnalysisRegisterCallbacks (
callback_on_kernel_build,
callback_on_kernel_run,
callback_on_kernel_complete)

[GT-Pin only]
GTPin_Entry (argc_gtpin, argv_gtpin)

[optional]
GPUAnalysisRegisterCallbacks (..)

OnKernelBuild
• cpu_callback_on_kernel_build (kernel_name)
OnKernelRun
• cpu_callback_on_kernel_run (kernel_name)
OnKernelComplete
• cpu_callback_on_kernel_complete (kernel_name)

[GT-Pin only]
GTPin_Entry (..)

<start GPU analysis>

GPUAnalysis.so

Figure 6.4: The control flow of XPU-Pin co-analysis tool for an x86 CPU and Intel
GPU or NVIDIA GPU.

combining x86 Pin tool (xpu-pin-driver.so) and GTPin analysis tool (GPUAnalysis.so).

Including a GPU analysis library can inadvertently cause the CPU analysis tool to treat

it as part of the application. To prevent this, the CPU tool must explicitly exclude

it from instrumentation. The XPU-Pin framework provides an API enabling the CPU

analysis tool to retrieve the name of the GPU analysis library for this purpose.

6.3 The Imperative For Efficient Simulation of Heteroge-

neous Systems

This section highlights the need for efficient methodologies to evaluate the performance

of large workloads running on heterogeneous computing systems in a fast and accurate

way.

6.3.1 The Trend Towards Heterogeneity

The traditional Moore’s law [9, 187] driven performance improvements have diminished

in recent years [188]. Furthermore, multi-core scaling may be reaching its limits due to

power constraints [167]. This marked a significant shift towards heterogeneous architec-

tures, primarily driven by the increasing complexity and computational demands posed

by artificial intelligence (AI) workloads. As the demand for high-performance computing

(HPC) systems and data centers continues to grow, understanding and optimizing the

6.3 The Imperative For Efficient Simulation of Heterogeneous Systems 127

performance of applications running on heterogeneous architectures becomes critical.

The coexistence of multiple processing units, such as CPUs and GPUs, in these systems

(typically known as an XPU) has become a standard of modern computing.

6.3.2 Limitations of Traditional Analysis Methodologies

Traditional heterogeneous systems tend to underutilize the available computing power of

CPU and GPU resources [189, 190]. Most traditional heterogeneous applications use the

CPU to schedule computing tasks for accelerators like GPUs. While the highly parallel

computation happens in the GPU, the CPU waits, causing the CPU cycles to be wasted.

However, this may not be the case with emerging applications that may fully utilize the

CPU resources by executing tasks concurrently on the CPU and GPU. Independent per-

formance evaluations of CPU and GPU using simulation techniques can yield misleading

microarchitectural state estimations, especially in tightly coupled systems. These eval-

uations cannot accurately capture the shared memory and cache access patterns, which

are influenced by the underlying cache coherency protocols. This independent analysis

can lead to inaccurate microarchitectural states due to the misrepresentation of syn-

chronization between the processing units. Consequently, resource usage and execution

order might be misrepresented. Therefore, co-analysis and co-simulation techniques are

essential for accurate microarchitectural state evaluation in CPU-GPU systems.

6.3.3 Effective Sampling of Heterogeneous Workloads

There are several methodologies that address the problem of sampling single-threaded [2,

20, 27] and multi-threaded [8, 32, 33, 34, 43] CPU workloads. There are several sampled

simulation techniques that consider GPU workloads [16, 45, 46, 59, 60, 82, 83] to speed

up GPU-only simulation. Among the prior works for the sampled simulation of GPU

workloads, Kambadur et al. [59] proposed a GTPin-based methodology for the sample

selection of Intel GPU workloads. The methodology utilizes basic block information

128XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

(along with other program features) to characterize program execution. Prior works

like TBPoint [45] and PKA [46] utilize handpicked feature vectors, including kernel size

and control flow divergence, to classify similar GPU regions. Photon [16] employs a

cluster-based summarization technique that groups similar warps based on their behav-

ior and constructs basic block vectors (BBVs) for each cluster by aggregating individual

warp profiles and concatenating them. All these works consider GPUs as independent

computing units, which rely on the assumption that the heterogeneous workload could

be divided into CPU-only and GPU-only components. Under this assumption, the total

execution time of the heterogeneous application can be calculated by summing up the

CPU execution time, GPU execution time, and the data transfer time between CPU and

GPU. However, this assumption may no longer be valid for emerging workloads. Inde-

pendent analyses may result in inconsistent timings for workload-specific CPU and GPU

events, such as kernel launches, memory allocations, and warp divergence. Therefore, a

combination of CPU-only and GPU-only sampling methods for heterogeneous systems

could lead to inaccurate performance measurements.

6.3.4 Effects of Microarchitectural Warmup

In sampled simulation, microarchitectural warmup is necessary to ensure the simulated

microarchitecture reflects a realistic state prior to detailed performance measurements.

Previously proposed microarchitecture warmup methodologies [5, 88, 91, 92] enable the

detailed simulation of the regions of interest starting at the right state. Warmup method-

ologies can be categorized into functional warming and statistical warming. Functional

warming techniques [32, 33] rely on actual program execution, whereas statistical warm-

ing [5, 88, 91, 92] leverages profiling tools to gather memory access information.

XPU-Point provides a framework for collecting memory access information necessary

for developing integrated CPU-GPU warmup methodologies in heterogeneous systems.

Architects tend to integrate computing devices like CPUs and GPUs to share L3 cache,

6.4 XPU-Point Sample Selection Methodology 129

XPU-BBV
CPU-GPU
Workload

XPU-Profiler
ROIsShared

Libs

Cluster

Tuning

Weights

Figure 6.5: The workflow of XPU-Point methodology to capture representative regions
(or ROIs) along with their corresponding weights suitable for the sampled simulation of
heterogeneous workloads.

memory, etc., for higher throughput. For instance, NVIDIA Grace-Hopper [191] utilizes

a CPU-GPU coherent memory model, while Apple’s M-series processors deliver CPUs

and GPUs on the same die that share memory. The trend towards tightly coupled CPU-

GPU computing will continue, especially with the advancement in interconnects (like

CXL [192] and NVLink [193]) and chiplet-based [194] IC packaging [195] technologies.

This enables the tight integration of CPUs and GPUs within a single package, as seen

in Intel’s Lunar Lake architecture [196] or AMD’s Exascale Heterogeneous Processor

(EHP) architecture [99, 197, 198]. XPU-Point can be extended to gather shared mem-

ory access patterns, enabling the generation of combined warmup data that addresses

this crucial requirement in integrated GPU systems. Multi-GPUs are widely used in

high-performance computing [199] and large language models (LLM) [200] to accelerate

their applications. In multi-GPU systems, CPUs coordinate the interaction between the

GPUs. In this context, XPU-Point may be extended to collect warmup data to enable

accurate sampled simulation of multi-GPU systems.

6.4 XPU-Point Sample Selection Methodology

In this section, we introduce XPU-Point, a novel methodology to sample heterogeneous

CPU-GPU workloads. To the best of our knowledge, XPU-Point represents the first

solution to efficiently co-sample heterogeneous workloads. The overall workflow for the

XPU-Point methodology is outlined in Figure 6.5. The methodology relies on our XPU-

130XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

Profiler to generate the combined execution signature vectors of CPUs and GPUs. These

heterogeneous execution vectors are clustered to identify representative regions that can

be used for simulation-based performance evaluations of future heterogeneous architec-

tures.

Kernel

…

SYCL

CUDA

ND-range Work-group Work-item

Thread

Sub-group

WarpThread blockGrid

…

…

…

………

Block/Group0

Block/Group12 Block/Group15

Block/Group3

Block/Group7Block/Group4

…

…

…

…

…

Figure 6.6: A comparison of the hierarchical structures used in CUDA and SYCL
programming models to distribute kernel execution tasks, showing the level of granularity
at which work is assigned to the execution units. CUDA primarily utilizes the SIMT
execution model, while in SYCL, underlying architecture and implementations determine
the execution model.

6.4.1 Workload Distribution on GPUs

GPUs follow a hierarchical structure in both their hardware and programming models to

efficiently manage the massive number of threads. For example, NVIDIA GPUs typically

comprise multiple Streaming Multiprocessors (SMs), with each SM containing several

CUDA cores. To leverage the parallel architecture of NVIDIA GPUs, several threads

(usually 32 or 64 threads) are grouped into a warp (or wavefront). NVIDIA GPUs

primarily utilize a Single Instruction, Multiple Thread (SIMT) [201] model of CUDA,

where threads within a warp share the same program counter (PC) and consequently

execute the same instruction concurrently on the same CUDA core. Furthermore, mul-

tiple warps are grouped into thread blocks, which are then scheduled for execution on

the same SM and utilize the shared cache. The GPU kernels (functions offloaded to the

GPUs for parallel processing) are structured as Grids to orchestrate the execution across

all thread blocks.

6.4 XPU-Point Sample Selection Methodology 131

The concept of work groups in SYCL directly maps to how Intel’s Xe [202] cores dis-

tribute tasks. Work-groups, analogous to thread blocks, group a defined number (SIMD-

width) of threads for cooperative execution and data sharing. Intel GPUs typically em-

ploy a more flexible SIMD (Single Instruction, Multiple Data) [203] model redesigned

for high performance [204] on Intel GPUs in the SYCL programming model. This means

that threads within a work-group can execute a single instruction on multiple data el-

ements simultaneously. Work-groups are subdivided into sub-groups (similar to warps)

that share resources like local memory. Execution occurs on Vector Engines (VE) within

the Xe cores. SYCL employs queues to manage the submission of work-groups for ex-

ecution on the VE. ND-range defines the high-level structure of the kernel for parallel

execution across the processing elements, specifying a multidimensional grid of thread

blocks to be launched on the GPU. Figure 6.6 shows the workflow of a GPU kernel

execution on Intel and NVIDIA systems.

XPU-Point takes into account both CUDA and SYCL programming models to represent

the amount of execution done by the device. The execution in traditional CPU workloads

can be quantified by the number of instructions or basic blocks (code blocks that have

single entry and exit points) executed by each thread. In this work, we adopt a similar

approach to quantify the execution of GPUs. However, GPU execution differs due to

the SIMT/SIMD paradigm, where multiple threads or work-items collaborate to execute

an instruction. To account for this, XPU-Point leverages warps or subgroups as the

fundamental unit of execution on GPUs, analogous to instructions on CPUs.

6.4.2 Slices of Heterogeneous Applications

A slice (or region) represents a chosen segment of the application’s execution flow gen-

erated by splitting the application at a well-defined point. For a slice to be effective for

workload characterization, it must be repeatable across multiple runs of the application

to ensure consistency in the behavior for accurate sampled simulation and performance

132XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

CPU GPU
Heterogeneous

Workload

C
PU

 H
os

t
C

od
e

…
…

G
PU

 D
ev

ic
e

C
od

e

Slice

Ti
m

e

Figure 6.7: The representation of a slice (or region) in XPU-Point. A slice is defined
as the execution window between consecutive kernel calls within a heterogeneous appli-
cation.

evaluation. Traditional CPU workload sampling methodologies such as SimPoint [20],

BarrierPoint [34], and LoopPoint [8] identify slices based on repeatable program con-

structs. Simpoint, for instance, focuses on identifying intervals based on fixed-size in-

structions. Meanwhile, BarrierPoint and LoopPoint target regions that are delineated

by synchronization barriers and loops, respectively. Previously proposed sampled sim-

ulation techniques for GPU workloads [16, 45, 46] focus solely on the GPU kernels,

completely ignoring any interactions with the CPUs. In this work, we propose a novel

approach for slice identification, which is a contiguous code segment that spans from the

end of one kernel call to the end of the subsequent kernel call, as shown in Figure 6.7.

Therefore, the slice of a heterogeneous application includes both CPU and GPU execu-

tion. Similar to loops in LoopPoint or inter-barrier regions in BarrierPoint, the slices

identified by XPU-Point are repeatable across multiple executions on platforms with

similar compute capabilities.

6.4.3 Capturing Heterogeneous Execution Profiles

Understanding execution profiles within CPU-GPU systems demands a comprehensive

representation that integrates execution profiles from both processing units. Tradition-

6.4 XPU-Point Sample Selection Methodology 133

ally, the classification of regions based on the similarity of the code executed [18, 19]

works well for CPU workloads. The regions are represented as basic block vectors

(BBVs), which comprise basic blocks and their frequency. A number of prior works on

selecting representative regions of a workload have been built on this idea of representing

regions using code signatures. In the case of multi-threaded workloads where threads

split the work to execute on multiple cores, the amount of work done by the threads

is represented by concatenating the BBVs of each thread. Concatenating BBVs across

CPU and GPU threads is evident to be a promising technique, as it merges CPU thread

profiles with detailed GPU data, including both global and individual thread profiles.

Prior works show that concatenating per-thread profiles to form CPU BBV [8, 34, 164]

or per-warp profiles to form GPU BBV [16] leads to the accurate representation of

thread-level parallelism.

In this work, we devise a technique to represent the heterogeneous regions of the work-

load. We utilize XPU-Profiler, the profiling tool that we built upon XPU-Pin, to si-

multaneously generate BBVs for CPU and GPU execution. Within this framework, we

refer to CPU BBVs as those derived from program execution on the CPU, while GPU

BBVs refer to those obtained during program execution on the GPU. We demonstrate

that concatenating all GPU warps (or sub-groups) is efficient in representing the GPU

BBV. By concatenating the CPU BBV and GPU BBV forming XPU-BBV (shown in

Figure 6.8), we construct a unified representation that captures the behavior of a hetero-

geneous region. Previous studies [8, 34] have demonstrated that concatenating feature

vectors effectively captures individual thread behavior.

6.4.4 Selecting the Representative Slices

Representing the sheer number of GPU threads (or warps) in an XPU-BBV leads to

a significant increase in vector dimensionality, resulting in the curse of dimensional-

ity [205]. This phenomenon slows down clustering algorithms, which are critical for

134XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

BBVt0 BBVt1 BBVtN… BBVw0 BBVwKBBVw1 …

XPU-BBV

CPU BBV GPU BBV

Concatenate

Figure 6.8: The concatenation of CPU and GPU BBVs into a longer, combined XPU-
BBV that represents a heterogeneous region in XPU-Point methodology.

identifying representative regions from the profile data. To address this challenge, we

employ traditional dimensionality reduction techniques such as random linear projec-

tions. The algorithm selected for a desired level of dimensionality reduction is pivotal

in minimizing information loss within the profile data [206]. This ensures that the re-

sultant lower-dimensional space retains the vital characteristics necessary for accurate

workload characterization. Due to the differences in magnitude between CPU and GPU

dimensions, these feature vectors need to be projected separately. Further, we employ k-

means clustering algorithm [76] to cluster these heterogeneous regions as represented by

the lower-dimensional BBVs. The region closest to the centroid of each cluster serves as

the representative of the cluster [20]. Advances have been made in program representa-

tion using execution embeddings [207] and in clustering using deep neural networks [208].

We believe that such improvements are orthogonal to the basic idea of XPU-Point and

can be incorporated here.

6.4.5 Sample Validation and Tuning

The representativeness of the regions selected using the proposed methodology needs

to be validated. Sample validation, employing real hardware measurements like those

demonstrated in prior works [60], can be leveraged here. To validate the representative-

ness of the selected slices within heterogeneous workloads, we introduce XPU-Timer, a

tool built upon XPU-Pin. XPU-Timer leverages the x86 rdtsc instruction to provide

system timestamps (TSCs) at critical points during the native execution of the work-

6.4 XPU-Point Sample Selection Methodology 135

load: program start, program finish, and the boundaries of each predefined slice. These

timestamps allow us to extract the execution time for each representative slice. By

weighing these region execution times with their corresponding weights, we extrapolate

the execution time of the entire program. The difference between the full execution time

measured and the extrapolated time is known as the sampling error (or prediction error).

A lower sampling error indicates a more accurate selection of representative slices.

6.4.6 Estimating the Full Application Performance

Microarchitecture simulation and exploration greatly benefit from sampling large, het-

erogeneous workloads. Instead of simulating entire workloads for microarchitecture ex-

ploration, which is computationally expensive, representative slices of the workload can

be simulated rapidly. These slices capture the complex characteristics of heterogeneous

workloads, enabling researchers to explore how future microarchitectures can be opti-

mized for such workloads.

XPU-Point identifies representative slices of a heterogeneous workload that can be used

for detailed cycle-level or cycle-accurate microarchitecture simulations. The regions can

also be simulated on execution-driven heterogeneous simulators like Multi2Sim [96] and

gem5-gpu [97]. We would like to point out that the XPU-Pin framework can be used

for heterogeneous trace generation to support trace-driven simulators like MacSim [95].

Accurate performance measurements in sampled simulations rely on a warmed-up mi-

croarchitectural state before detailed simulation. However, warmup reconstruction for

heterogeneous systems remains an open research area. As this falls outside the scope of

our current work, we will not explore it further in the chapter.

136XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

6.5 Experimental Setup

Establishing the fidelity of workload sampling techniques – the ability to accurately rep-

resent full program behavior using the selected sample set – is essential. Simulation-based

performance comparisons are typically employed to assess this characteristic. However,

this approach is impractical for large, heterogeneous workloads. Thus, we follow a hybrid

evaluation approach by employing simulation-based performance evaluation for shorter

applications and hardware-based performance measurement using XPU-Timer for all

applications.

For our evaluation, we use a combination of standard heterogeneous benchmarks as well

as real-world HPC and AI workloads that use both CPUs and a GPU for computation.

We evaluate SPECaccel 2023 [209] benchmarks and SPEChpc 2021 [210] benchmarks,

along with real-world workloads like AutoDock [211, 212, 213], GROMACS [214], and

PyTorch [215] inference runs.

Table 6.1: The combinations of CPUs and GPUs for Intel- and NVIDIA-based systems
used to evaluate XPU-Point methodology.

CPU GPU

Intel Alder Lake [216] Intel Discrete Graphics 2 (DG2)
Intel Alder Lake Intel Iris Xe (integrated)
Intel Ice Lake-SP [217] Intel Ponte Vecchio (PVC) [218]
Intel Sapphire Rapids [219] Intel Ponte Vecchio (PVC)
Intel Cascade Lake [220] NVIDIA A100 [221]
Intel Skylake [222] NVIDIA GeForce GTX 1080
Intel Skylake NVIDIA TITAN Xp

Further, we also evaluate all of the workloads with XPU-Timer using native hardware

runs on both Intel-GPU-based and NVIDIA-GPU-based heterogeneous systems, and,

therefore, we separately compile the benchmarks suitable for these systems. For Intel-

based systems, we use Intel’s oneAPI [223, 224] toolkit to build the benchmarks, whereas

for NVIDIA-based systems, we use the NVIDIA CUDA toolkit [225]. The machines that

6.6 Evaluation 137

we used for our evaluation are listed in Table 6.1. Our focus is on demonstrating the

methodology’s efficacy across heterogeneous workloads on both Intel-based and NVIDIA-

based GPU systems. To isolate this aspect, we present the evaluation results for each

system type in separate graphs. This approach avoids comparisons of individual machine

performance and emphasizes the broader applicability of the methodology. Given the

evaluations done in this work, we aim to show that this methodology is applicable across

other heterogeneous architectures.

6.6 Evaluation

This section evaluates the effectiveness of XPU-Point in selecting representative regions

using realistic CPU-GPU heterogeneous workloads. The aim of this work is to allow

for fast and accurate microarchitecture simulations of these workloads to explore future

heterogeneous systems.

We extrapolate the performance of the full workload from the performance of N repre-

sentative regions using the formula:

Pproj =
N∑

i=1
Pi × multiplieri,

where Pproj denotes the projected or extrapolated performance of the full workload.

In addition, Pi and multiplieri denote the performance obtained and the multiplier

associated with the representative region regioni, respectively. The multiplier of a rep-

resentative region is dependent on the number of regions that belong to the cluster that

regioni represents [34]. This formula allows us to extrapolate performance metrics like

runtime, cache behaviors, branch behaviors, and IPC for the entire workload.

Sampling Error and Speedup. We quantify the difference between the extrapolated

performance metrics and the actual measured performance of the full workload to obtain

138XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

sampling error or prediction error [20]. We estimate the performance of the workloads

and the representative regions leveraging the system timestamp counter (TSC) on real

hardware, which is equivalent to runtime obtained through microarchitecture simulation.

The long simulation times required for full workloads make simulation-based validation

impractical for large workloads.

The sampling error ∆sample can be computed using the formula:

∆sample =
∣∣∣∣1 − Pproj

Preal

∣∣∣∣ ,

where Preal is the actual performance obtained through the measurement of the full

workload. Usually, sampling error is expressed as a percentage (error rate). This is

obtained by multiplying the absolute value of the sampling error (∆sample) by 100.

We define the speedup obtained using XPU-Point as the reduction in the amount of

work to be analyzed or simulated in detail after sampling [34]. That means,

speedup = num_slices

N
,

where N is the number of representative regions, and num_slices is the total num-

ber of slices in the entire workload. The speedup we show here is equivalent to the

serial speedup, which is achieved by simulating the representative regions sequentially.

Note that this speedup represents the minimum achievable reduction in simulation time.

The simulation of these representative regions can be parallelized, which could lead to

significantly higher speedups than the values presented here.

Cross-microarchitecture Validation. XPU-Point relies on the microarchitecture-

independent selection of representative regions. This allows researchers to profile an

application binary on one hardware and reuse the chosen regions for simulations on

different hardware within the same architecture. This is possible because XPU-Point

6.6 Evaluation 139

0
20
40
60
80

100

In
st

ru
ct

io
ns

%

CPU GPU

Figure 6.9: The instruction split between CPU and GPU for loop executions in
SPECaccel 2023 benchmarks using train inputs.

utilizes BBVs to capture the control flow structure of the program, a characteristic in-

dependent of the underlying architecture. To verify the effectiveness of this approach

across microarchitectures, XPU-Point employs cross-microarchitecture validation. This

validation involves selecting regions on one machine using XPU-Profiler and then validat-

ing their representativeness on another machine with a different CPU-GPU combination

within the same architecture using XPU-Timer.

Runtime Overhead. XPU-Point, like other dynamic binary instrumentation tools,

introduces analysis-dependent runtime overhead. XPU-Profiler has a large overhead

due to extensive library usage and process/thread creation of large workloads. By de-

fault, it instruments all libraries, processes, and threads. However, XPU-Point offers the

flexibility to reduce the analysis overhead by instrumenting specific processes/threads

and libraries. The XPU-Timer tool employs a Pin-probes mode driver, avoiding CPU

instrumentation altogether. The GPU component of the tool utilizes low-overhead in-

strumentation to track key events like GPU initialization and kernel start/stop.

6.6.1 Comparison with GPU Sample Selection

We present a detailed analysis of SPECaccel 2023 [209], a benchmark suite with compu-

tationally intensive parallel heterogeneous applications that exercises the performance

of the accelerator (GPU in our case), host CPU, memory transfer between host and ac-

celerator, compilers, and the runtime system [226]. We used Intel x86 Sapphire Rapids

server with Intel Data Center GPU Max 1100 for this evaluation.

140XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

40
3.s

ten
cil

45
0.m

d

45
3.c

lvr
lea

f

45
6.s

pF

40
4.l

bm
45

2.e
p

45
7.s

pC

46
0.i

lbd
c

0
50

100
150

N
um

Lo
op

s CPU GPU

Figure 6.10: The number of loops executed on CPU and GPU in SPECaccel 2023
benchmarks using train inputs.

Figure 6.10 shows the analysis of loops in the main image of the benchmarks identified

using Intel Software Development Emulator (Intel SDE) [227]. The number of loops on

the GPU was obtained using Intel GTPin [81]. For SPECaccel 2023 workloads using

CPU and GPU, we wanted to test the effect of focusing just on the GPU computation.

We tested two profilers: XPU-Profiler that collects combined CPU-GPU BBVs; and

GPU-Profiler that collects the GPU BBVs. In both the cases, the region boundaries are

kernel boundaries leading to the same number of BBVs. GPU-Profiler uses Intel GTPin

to collect per-thread BBVs for the entire computation which are copied to the CPU at

the end of each GPU kernel execution. The average slowdown of the GPU-Profiler for

SPECaccel test cases was 4.7×. XPU-Profiler on the other hand uses Pin JIT mode

instrumentation at the basic block level. Synchronization between multiple threads is

necessary in this case. The average slow-down for the XPU-Profiler for the SPECaccel

test cases was 102×.

Figure 6.11 plots the sampling errors for SPECaccel 2023 benchmarks using XPU-Point

and GPU-Point evaluations. Overall, the sampling errors with GPU-only approach

(geometric mean of 23.9%) are higher than those with the combined CPU-GPU approach

(geometric mean of 0.99%). In the case of 452.ep, focusing on just the GPU computation

in isolation predicts the overall performance with a low error (1.34%) although still

higher than the combined CPU-GPU approach (0.10%). 404.lbm demonstrates another

6.6 Evaluation 141

40
3.s

ten
cil

45
0.m

d

45
3.c

lvr
lea

f

45
6.s

pF

40
4.l

bm
45

2.e
p

45
7.s

pC

46
0.i

lbd
c

geo
mean

0

10

20

74.2 43.4 210.9 66.8

Sa
m

pl
in

g
Er

r%

XPU slices GPU slices

Figure 6.11: The sampling errors for the SPECaccel 2023 benchmarks with GPU-only
profiles (GPU-Point) vs. CPU-GPU profiles (XPU-Point).

extreme, where the GPU-only approach only found one representative region leading to

210% sampling error. Using heterogeneous profile, 15 regions were identified by XPU-

Point leading to a much lower sampling error (0.56%).

6.6.2 Sample Validation using Native Hardware

While simulation provides a controlled environment for workload analysis, validating

samples on native hardware is often practical for large workloads. To enable this, we

employ XPU-Timer to gather precise performance metrics from native hardware execu-

tions, as mentioned in Section 6.4.5. The results of sample validation using XPU-Timer,

categorized by benchmark suite, are presented here.

6.6.2.1 SPEChpc 2021

The SPEChpc 2021 benchmark suites [210] provide application benchmarks from well-

selected science and engineering codes that are portable across CPUs and accelerators.

The suites include Tiny, Small, Medium, and Large workloads, supporting multiple

programming models and requiring varying amounts of memory and number of ranks

to run. We chose the Tiny workload (60 GB memory requirement) and limited our

testing to a single node/rank. We tested both the test and ref inputs for evaluation.

The sampling errors and speedups for the benchmarks running test inputs are shown

142XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

50
5.l

bm
_t

51
3.s

om
a_

t

51
9.c

lvl
eaf

_t

52
1.m

ini
sw

p_
t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

0
2
4
6

Sa
m

pl
in

g
Er

r%

Intel PVC Intel DG2 (cross) NVIDIA A100

Figure 6.12: The sampling errors plotted for the SPEChpc 2021 benchmarks with
test inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled and
validated on an NVIDIA A100 machine.

in Figure 6.12 and Figure 6.13 for the Intel-based systems and NVIDIA-based systems.

Due to the huge memory requirements, we evaluated the ref input set of SPEChpc

benchmarks only on the Intel-based systems, and the sampling errors and speedups are

shown in Figure 6.14 and Figure 6.15.

50
5.l

bm
_t

51
3.s

om
a_

t

51
9.c

lvl
eaf

_t

52
1.m

ini
sw

p_
t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

101
102
103

Sp
ee

du
p Intel PVC NVIDIA A100

Figure 6.13: The simulation speedup plotted for the SPEChpc 2021 benchmarks with
test inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled and
validated on an NVIDIA A100 machine.

6.6.2.2 AutoDock-GPU

AutoDock is a widely used software that performs molecular docking simulations. AutoDock

is commonly used for benchmarking and performance evaluation of heterogeneous sys-

6.6 Evaluation 143

50
5.l

bm
_t

51
3.s

om
a_

t

51
8.t

eal
eaf

_t

51
9.c

lvl
eaf

_t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

0

2

4

Sa
m

pl
in

g
Er

r%

Intel PVC

Figure 6.14: The sampling errors obtained for the representative regions identified for
SPEChpc 2021 benchmarks that use ref inputs from the tiny set. The representative
regions of the benchmarks are generated and validated on an Intel PVC machine.

50
5.l

bm
_t

51
3.s

om
a_

t

51
8.t

eal
eaf

_t

51
9.c

lvl
eaf

_t

53
4.h

pg
mgfv

_t

53
5.w

eat
he

r_
t

102

103

104

Sp
ee

du
p Intel PVC

Figure 6.15: The speedup obtained for the representative regions identified for
SPEChpc 2021 benchmarks that use ref inputs from the tiny set.

tems. Figure 6.16 and Figure 6.17 show the sampling results obtained on Intel-based

systems and NVIDIA-based systems for AutoDock using XPU-Point. We use three dif-

ferent platforms to validate the sample selected for the AutoDock [211, 213] application

using various inputs. The SYCL implementation of AutoDock [212] is used for evaluating

Intel GPU systems.

6.6.2.3 GROMACS

GROMACS [214, 228] is a widely used open-source tool [229] for the simulation of

molecular dynamics, which uses both CPU and GPU for computation. We manually

configure the type of computation to be offloaded to the CPU and GPU, as shown

144XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

run.1ac8 run.1stp run.3ce3 run.3tmn run.7cpa
0
1
2
3

Sa
m

pl
in

g
Er

r%

Intel DG2 Intel PVC (cross)
NVIDIA A100 NVIDIA GTX

Figure 6.16: Sampling errors for AutoDock (work-item=8) using different inputs on
Intel and NVIDIA GPU platforms.

run.1ac8 run.1stp run.3ce3 run.3tmn run.7cpa
0

10
20
30
40

Sp
ee

du
p Intel NVIDIA

Figure 6.17: The speedup obtained for AutoDock (work-item=8) using different
inputs on Intel and NVIDIA GPU platforms.

in Table 6.2, and identify the representative regions. We evaluate all possible cases

of configuring GROMACS to split the computation across both CPU and GPU. The

sampling errors and speedups are reported in Figure 6.18 and Figure 6.19 for Intel-based

systems and NVIDIA-based systems. We infer that the GROMACS workload Type F,

with the most number of slices, benefits the most from the XPU-Point methodology

achieving the maximum speedup. For Type A, the regions are expected to be larger due

to the predominantly CPU-intensive nature of the workload.

Table 6.2: The classification of GROMACS based on the offloading device for the
execution of each calculation. We also use -nsteps 200 with -notunepme for all types.
The last column shows the number of slices for each type.

Type nb pme pmefft bonded update #slices

A GPU CPU CPU CPU CPU 305
B GPU CPU CPU GPU CPU 506
C GPU GPU CPU CPU CPU 707
D GPU GPU CPU GPU CPU 908
E GPU GPU GPU CPU CPU 3730
F GPU GPU GPU GPU CPU 3931

6.6 Evaluation 145

Typ
e A

Typ
e B

Typ
e C

Typ
e D

Typ
e E

Typ
e F

0
2
4
6
8

Sa
m

pl
in

g
Er

r% Intel Iris NVIDIA A100

Figure 6.18: The sampling errors for GROMACS in different settings on Intel Iris
and NVIDIA A100 using XPU-Point.

Typ
e A

Typ
e B

Typ
e C

Typ
e D

Typ
e E

Typ
e F

0
20
40
60
80

Sp
ee

du
p Intel Iris NVIDIA A100

Figure 6.19: The speedup obtained for GROMACS in different settings on Intel Iris
and NVIDIA A100 using XPU-Point.

6.6.3 Evaluation of PyTorch Inference Workloads

We evaluated PyTorch [230] inference workloads running text processing tasks using

the BERT (Bidirectional Encoder Representations from Transformers) [231] model and

image classification tasks using the ResNet50 (Residual Network with 50 layers) [232]

model. It compares performance across various configurations: data precision (BF16,

FP16, FP32, and INT8 quantization) and execution mode (imperative Python vs. pre-

compiled TorchScript). INT8 quantization represents numbers using just 8 bits, sig-

nificantly improving performance compared to higher precision formats but requiring a

pre-quantization process. These workloads were optimized with the Intel Extension for

PyTorch [215] to be evaluated on the machines with Intel PVC GPUs.

We present the sampling errors of PyTorch workloads using XPU-Point in Figure 6.20

and Figure 6.21. Profiling more libraries caused the XPU-Profiler overhead to increase as

146XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

BERT_BF16
_im

BERT_FP16
_im

BERT_FP32
_im

BERT_BF16
_ts

BERT_FP16
_ts

BERT_FP32
_ts

ResN
et5

0_
FP32

_im

ResN
et5

0_
FP32

_alt
_im

ResN
et5

0_
FP32

_ts

IN
T8_

Qua
nt

iza
tio

n
0
2
4
6

Sa
m

pl
in

g
Er

r% Intel PVC

Figure 6.20: The sampling errors obtained for PyTorch Inference runs using XPU-
Point on Intel PVC. im=Imperative, ts=TorchScript.

BERT_BF16
_im

BERT_FP16
_im

BERT_FP32
_im

BERT_BF16
_ts

BERT_FP16
_ts

BERT_FP32
_ts

ResN
et5

0_
FP32

_im

ResN
et5

0_
FP32

_alt
_im

ResN
et5

0_
FP32

_ts

IN
T8_

Qua
nt

iza
tio

n

101

102

103

Sp
ee

du
p

Intel PVC

50
100
150

#
R

eg
io

ns
Figure 6.21: The speedups obtained during the simulation of PyTorch Inference
runs. The line graph (plotted with the secondary y-axis) shows the number of repre-
sentative regions selected using XPU-Point. im=Imperative, ts=TorchScript.

expected, as we observe for BERT_BF16_Ts, BERT_FP16_Ts, and BERT_FP32_Ts, although

the cost of profiling will be amortized over multiple simulations. In general, the profiling

and analysis of all shared libraries is necessary. To speed up the analysis, we chose to

analyze the libraries that significantly impact workload runtime.

The PyTorch workloads use a large number of libraries (more than 150), processes

(around 60), and threads (more than 100), causing a large overhead in analyzing them.

In this work, we focused on the main libraries and processes during instrumentation.

6.7 Related Work 147

Pin-Bare GTPin-Nothing XPU-Timer GPU-Profiler XPU-Profiler
100

101

102

103

Sl
ow

do
w

n
BERT_BF16_im BERT_FP16_im
BERT_FP32_im BERT_BF16_ts
BERT_FP16_ts BERT_FP32_ts
ResNet50_BF16_im ResNet50_FP16_im
ResNet50_FP32_im ResNet50_FP32_alt_im
ResNet50_BF16_ts ResNet50_FP16_ts
ResNet50_FP32_ts INT8_Quantization

Figure 6.22: The slowdowns (normalized with the native runtime of the application)
for PyTorch Inference runs on Intel Ponte Vecchio GPU. The slowdown in Pin-
Bare mode measures the slowdown due to running the benchmarks under Pin with
no instrumentation. To evaluate the slowdown caused by the GTPin Tool, we use a
basic instrumentation tool, Nothing. XPU-Timer uses XPU-Pin to collect the timing
information of the benchmarks. The GPU-Profiler profiles the benchmarks using GTPin
to collect BBVs. XPU-Profiler uses XPU-Pin to collect BBVs of the CPU-GPU execution
concurrently.

Figure 6.22 shows the run-time overhead of various evaluation tools used with these

workloads.

6.7 Related Work

We have discussed the most relevant previous works in Section 6.3. Workload sampling

has been an active research area for several decades, and several techniques were proposed

for CPUs [2, 8, 20, 27, 30, 32, 33, 34, 43, 78, 80, 164] and GPUs [16, 45, 46, 59, 60, 82, 83]

in this direction primarily for the reduction of simulation time and resources. Sev-

eral CPU simulators [6, 14, 93], GPU simulators [7, 98, 101, 102], and heterogeneous

CPU-GPU simulators [95, 96, 97, 99, 100, 233] are available for performance estima-

tion. However, simulating large workloads on cycle-level simulators is prohibitively

time-consuming.

Several programming models cater to heterogeneous computing, including OpenMPI [234],

148XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

StarPU [235], OpenCL [236], OpenMP [237], OmpSs [42], CUDA [225, 238], and AMD

HIP [239]. OpenCL and CUDA are the most widely adopted programming models for

heterogeneous platforms. OpenCL is an open standard for programming heterogeneous

platforms that enables programmers to write portable code. CUDA is a vendor-specific

programming model optimized for NVIDIA GPUs, offering a suite of libraries and tools

to maximize performance. Prior works [240, 241, 242, 243] compare the performance of

CUDA and OpenCL programming models and show that the translation of one model

to another works well for various applications. SYCL [244] is a modern heterogeneous

programming model built on C++. SYCL programs are structured with two distinct

components: host code and device code (kernels) where the host code is executed

on the CPU, and the kernels execute on either the host or an accelerator (like GPU).

There are several implementations of source-to-source translation tools from CUDA to

SYCL [212, 245]. In this work, we use SYCL (Intel’s implementation [246]) and CUDA

programs to evaluate Intel and NVIDIA GPU systems, respectively.

6.8 Conclusion and Future Directions

In the wake of the ever-increasing demands of AI workloads, effectively evaluating large

workloads on heterogeneous architectures has become ever more significant. This chapter

proposes XPU-Point, a methodology for the sample selection of heterogeneous CPU-

GPU workloads. XPU-Point leverages XPU-Pin, our instrumentation framework to

combine CPU and GPU analysis. We demonstrate the accuracy and efficiency of the

XPU-Point through the evaluation of real-world heterogeneous workloads, highlighting

its ability to significantly reduce the simulation time. This work forms the basis for

selecting representatives to use in a host of simulators, from cycle-level to higher-level

architectural simulation methodologies.

XPU-Point is the first, to our knowledge, to propose a sample selection methodology tar-

6.8 Conclusion and Future Directions 149

geted for heterogeneous workloads. The methodology lays a solid foundation for future

enhancements, including support for multiple accelerator types. Our current focus is on

the sample selection of workloads where the primary process manages kernel launches.

To address complex scenarios, CPU computation loops can be combined with GPU ker-

nel invocations to form repeatable code regions. Although not discussed in this chapter,

XPU-Point can be extended to support multi-GPU systems, which can be enabled by

combining synchronized region profiles from individual GPUs. As system complexity in-

creases, particularly with advanced interconnects like CXL and NVLink, system-specific

considerations become crucial for effective sampling techniques. This work assumes that

the simulator models interconnect effects, making the proposed methodology broadly

applicable.

Chapter 7
ROIperf: Rapid Validation and Iterative
Tuning of Workload Sampling Methodologies

The measure of the information content is the measure of the

degree of uncertainty or the degree of surprise.
— Claude Shannon

Accurately evaluating processor performance for future architectures on cycle-accurate sim-
ulators is time-consuming. While workload sampling offers a faster alternative, validating
the representativeness of selected regions of interest (ROIs) requires full program simula-
tions, which becomes impractical for large workloads. This work introduces ROIperf, a
framework that leverages real hardware to evaluate both the full workload and ROIs. This
allows for faster validation of workload sampling, particularly for complex, long-running
workloads.

7.1 Introduction

Cycle-accurate, detailed simulation of computer systems tends to be extremely slow,

with simulation speeds of complex, modern processor designs can be as low as a few

thousand instructions per second, that is, more than 100,000× slower than native speeds.

152 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

102

104

106

W
al

l T
im

e
(in

 se
co

nd
s)

1 minute

1 hour

1 day

1 week

Simulation ROIperf

Figure 7.1: A comparison of the total wall-time required to validate the representative
regions identified for the multi-threaded SPEC CPU2017 benchmarks using train inputs
(the gap is expected to increase for ref inputs). The bars show a comparison of the
minimum wall time taken to validate the regions (selected using LoopPoint [8] method-
ology) on a cycle-level simulator and the ROIperf framework.

Simulating large modern applications with trillions of instructions in their entirety is,

therefore, not practical when using these methods directly. Instead, simulation of regions

of interest (ROIs) from large application executions and extrapolating the full-program

performance is a standard technique employed [2, 8, 20, 30, 32, 33, 34, 65]. To gain

confidence in the extrapolated results, it is necessary to validate that the ROIs selected

closely represent full-program behavior [62, 63, 64]. Traditionally, such validation is done

by comparing the simulated performance of the entire program with the performance

extrapolated from ROI simulations. However, since full-program simulation for most

realistic applications is impractical, to begin with, such simulation-based validation is

limited to either short-running programs and/or using fast but inaccurate simulators.

Performance monitoring on native hardware offers a significantly faster alternative for

sample validation compared to traditional architecture simulators. Figure 7.1 shows

that the validation of representative regions using our proposed ROIperf methodology

can be performed at near-native speed, while simulation-based validation can take weeks

or months. Accurately identifying representative regions within an application typically

7.1 Introduction 153

involves iterative parameter tuning and re-validation. For example, applications like

gcc may require up to five times more representative regions than other applications, as

shown in previous works [20]. Without extremely fast techniques, it becomes impractical

to validate the efficacy of workload sampling methodologies for large-scale applications.

In this work, we aim to provide a solution to this challenge to enable rapid sample

validation without the need for long-running simulations.

Although measuring full-program performance on native hardware is well-established [247,

248], isolating and measuring the performance of specific regions of interest presents a

significant challenge. To keep simulation times in check, ROIs are often significantly

smaller than the full-program execution. These ROIs might only consist of a few million

instructions, running for just milliseconds on real hardware. Precisely gathering per-

formance data solely for the ROIs on native hardware with high fidelity is challenging.

Loop-based representations of ROIs, for instance, offer high accuracy and reproducibil-

ity [8]. However, current hardware architectures lack native support for directly identi-

fying such representation of regions. In an attempt to address this challenge, we present

ROIperf, a methodology that incorporates lightweight instrumentation to achieve the

necessary control and precision for isolating regions of interest. ROIperf utilizes Pin in

probe mode [116], which is low overhead as it operates by patching an in-memory image

of the application instead of using just-in-time (JIT) compilation, which can introduce

significant performance overheads [185] that interfere with the workload behavior. While

the instrumentation capability of a Pin probe tool is limited, its low overhead makes it

ideal as a building-block for ROIperf. ROIperf uses the Pin probe to merely hook into

the application execution at the beginning and register callbacks based on hardware

performance counters guided by the ROI specification.

154 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

The Repeatability Challenge

Profile-based simulation region selection techniques, like SimPoint [20], typically require

at least two program executions. The first run gathers profiling data to identify the

ROIs for simulation. Subsequently, the second execution simulates the selected ROIs.

Profile-based sample selection methodologies assume identical program behavior across

executions, which is difficult to guarantee, especially for multi-threaded programs. Het-

erogeneity in hardware environments (for instance, varying ISA support leading to scalar

vs. vectorized runs), inconsistencies in system libraries, and timing-dependent control

flow (for example, work stealing in parallel applications) can all introduce discrepancies

between profiling and simulation runs.

Several works have been proposed to ensure repeatable program execution during pro-

filing and simulation. PinPlay [77] utilizes a record-and-replay framework, guaranteeing

identical behavior across analyses by capturing the entire program execution and then

performing profiling/simulation using a deterministic replay. However, PinPlay’s replay

incurs significant overhead (≈ 50× slowdown), rendering performance counter-based

evaluation inaccurate. Other efforts to improve repeatability include using static bina-

ries, checkpoints [249], or ELFies [47]. However, none of these techniques guarantee fully

repeatable execution, particularly in multi-threaded scenarios where timing-dependent

control flow and the resulting execution divergence happen more often [73, 124].

While ROIperf leverages native program execution to validate the samples or ROI, we

acknowledge the inherent challenge of guaranteeing perfect repeatability across runs.

However, the effects of this challenge can be minimized by executing both the sample

selection and ROIperf measurements in a strictly controlled environment. We describe

tests for the applicability of ROIperf prior to the measurement in Section 7.5. In our

evaluations, we find that ROIperf is effective in identifying the regions accurately in

most cases.

7.1 Introduction 155

ROIperf

Sampling Error

Extrapolate

Workload

Region
Performance

Workload
Performance

Sample
Selection

Regions of
Interest

Figure 7.2: An overview of the working of ROIperf framework to validate the regions
of interest (ROIs). The performance of the full workload and the ROIs are measured on
the native hardware. The extrapolated performance is compared with the performance
of the full runs to quantify the sampling error.

Contributions and Organization of the Chapter

To summarize, the chapter makes the following contributions:

1. We introduce ROIperf, a framework designed to rapidly evaluate the effectiveness

of workload sampling methodologies. We demonstrate its application in validating

regions of interest (ROIs) for long-running single-threaded, and multi-threaded

workloads.

2. We leverage previously proposed PinPoints [24] (for single-threaded programs)

and LoopPoint [8] (for multi-threaded programs) methodologies for ROI selection.

Both methodologies rely on profiling based on deterministic replay [77] for region

selection.

3. We also introduce sanity tests (detailed in Section 7.5.1) to assess reproducibility

and identify extreme deviations in control flow in program execution. For accurate

ROI validation, achieving identical control flow between the ROIperf run and the

profiling run used for ROI selection is essential.

4. We will open-source the ROIperf infrastructure for use in the community, enabling

the sample validation of large, realistic applications at near-native speeds, which

was not possible before.

156 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

The rest of the chapter is organized as follows. In Section 7.2, we discuss the background

on workload sampling methodologies and techniques for sample validation. Section 7.3

presents the ROIperf methodology and implementation details. We then describe the

experimental infrastructure in Section 7.4, followed by an extensive evaluation of ROIperf

in Section 7.5 to demonstrate the applicability of the proposed methodology. Finally,

we present the related work in Section 7.6 and conclude the chapter in Section 7.7 with

some possible future directions.

7.2 Background

In this section, we provide a background on the existing workload sampling techniques,

particularly those leveraged in this chapter for sample selection. We also provide an

overview of previously proposed sample validation techniques.

7.2.1 Sample Selection Methodologies

SimPoint [20] and SMARTS [2] are two well-established techniques for sampling single-

threaded applications to accelerate simulation. SimPoint is a profile-driven methodology

that identifies representative regions for simulation, whereas SMARTS employs statisti-

cal sampling for fast simulation. We employ SimPoint to select representative regions of

single-threaded applications.

Accurately sampling multi-threaded workloads presents a significant challenge. Applying

naive extensions of single-threaded techniques directly proves ineffective due to factors

like thread interactions and spin-loops [31]. There are several techniques proposed to

sample multi-threaded workloads [8, 30, 32, 33, 34], each having its own limitations, as

discussed in Chapter 2. In this chapter, we evaluate LoopPoint [8] methodology that

applies to generic multi-threaded workloads. LoopPoint identifies regions bounded by

loop entries and can achieve high simulation speedups without compromising on sampling

7.2 Background 157

accuracy.

7.2.2 Sample Validation

Validating the representative regions identified for a large application can be tedious.

This typically requires the full simulation of the application and the representative re-

gions. While FPGA-based simulation infrastructures like FireSim [50] offer faster exe-

cution compared to traditional cycle-level software simulators, their turnaround time is

still not negligible. Moreover, the hardware implementation of each component within

the limited memory of the FPGAs is challenging.

Perelman et al. [21] propose a technique to select statistically valid representative regions

early in the application to reduce the fast-forward time to reach the simulation regions.

Gottschall et al. [250] propose SimPoint validation with TraceDoctor, an instrumentation

framework attached to FireSim. This technique can be used to validate SimPoints for

a RISC-V model running on FPGAs at high speeds. While significantly faster than

detailed simulation, it remains slower than hardware validation and is limited to FPGA-

based models.

7.2.3 Hardware Performance Counters

Modern microprocessors have special hardware registers called hardware performance

counters for monitoring various performance-related metrics [66]. These counters pro-

vide the ability to measure performance in real-time and are typically used by software

performance tools to measure metrics like the number of instructions executed, cache

misses, page faults, etc [251]. By measuring these metrics, performance tools can help

developers identify bottlenecks and other performance issues in their software. Because

these counters are built into the hardware, they are able to provide measurements of

performance-related metrics with very low overhead.

158 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

7.2.4 Instrumentation using Pin

Pin [116] is a well-known dynamic instrumentation and analysis framework for x86 ap-

plications. It offers an application programming interface (API) for adding extra code

at various points within a program. The API differs based on the mode specified during

Pin initialization. Pin supports two modes: (a) a just-in-time (JIT) mode which trans-

lates the test program in memory and adds instrumentation during the translation, and

(b) a probe mode which merely patches an in-memory copy of the program with extra

code. The JIT mode API allows for sophisticated run-time analyses but at the cost

of translation overhead. The probe mode API is limited to adding extra code only at

specific program points, although the overhead of such an addition is very low. ROIperf

leverages Pin in probe mode due to its low overhead, which minimizes perturbation

during performance measurement of the target application.

7.3 Methodology and Implementation Details

This section describes the implementation details of the ROIperf methodology. We will

further present and compare the usage models of the methodology for single-threaded

and multi-threaded applications.

7.3.1 ROI Selection using Sampling

To select representative regions of interest (ROIs), we employ phase-based and loop-

based approaches. For single-threaded applications, we leverage the PinPoints method-

ology [24]. This method builds upon SimPoint methodology [20] where an application

is profiled to generate basic block vectors at every execution slice (indicating unit of

work), and the resulting vectors are clustered to identify multiple phases in the applica-

tion. A representative ROI is chosen for each phase, weighted proportional to the size

of the phase it represents. Similarly, we use LoopPoint methodology [8] to identify the

7.3 Methodology and Implementation Details 159

representative ROIs of multi-threaded applications. LoopPoint demarcates application

regions based on loop iterations (instead of instruction counts) and clusters these regions

to select ROIs. The ROIs are then used to guide architectural simulations. However,

this approach relies on the assumption that the execution of ROIs can be reproduced

precisely during the simulation as they were during profiling.

7.3.2 ROI Specification

The evaluation using ROIperf considers program repeatability to ensure ROIs remain

representative. However, single-threaded programs can often exhibit non-repeatable be-

havior [77]. One of the main reasons for this behavior is the differences in the microar-

chitecture that are used for profiling and performance measurements. Other reasons

include changes in shared library versions and memory allocation patterns (load and

stack locations). To address this and maintain ROI validity, ROIperf enforces identical

shared libraries and memory allocation during measurement as observed during profil-

ing. For example, the loading addresses of the shared libraries and the starting address

of their stacks should remain the same. On Linux, this can be achieved by temporarily

disabling Address Space Layout Randomization (ASLR).

A single-threaded ROI can be simply represented by the retired instruction count at the

beginning and the end of the region. As long as regions are repeatable, ensured by using

fixed shared libraries and by turning off ASLR, capturing hardware performance counter

values at ROI boundaries is sufficient for performance projection (Figure 7.3) of single-

threaded programs. For single-threaded programs, an ROI can be represented by the

retired instruction count at the beginning and end of the region. Assuming repeatable

program execution (achieved through fixed shared libraries and similar microarchitec-

ture), capturing hardware performance counter values at ROI boundaries suffices for

This can typically be done globally by modifying /proc/sys/kernel/randomize_va_space, or on a
per-process basis by prepending the command line with setarch x86_64 --addr-no-randomize.

160 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

performance measurements (as shown in Figure 7.3). For multi-threaded programs, a

major source of non-repeatability is the timing and behavior of thread synchronization

[31, 73, 77]. Instruction counts are, therefore, not a reliable way to specify ROI bound-

aries. The LoopPoint methodology [8] guarantees ROI repeatability by selecting units

of work that begin and end at worker loop entries to avoid synchronization overhead

and ensure consistent behavior across executions. LoopPoint defines ROIs using pairs

of (PC, count), where PC represents the program counter address of the corresponding

worker loop entry and count signifies the number of loop iterations. This approach en-

sures the invariant nature of worker loops to establish reliable ROI boundaries across

executions.

7.3.3 ROI Handling in ROIperf

ROIperf aims to capture relevant hardware performance counter values at the bound-

aries of each region of interest (ROI). It achieves this by leveraging the Linux function

perf_event_open() to program specific hardware performance counters. The required

performance counters can be specified through an environment variable ROIPERF_-

LIST. This variable expects a comma-separated list of number pairs in the format

perftype:counter. Here, perftype indicates the counter type (0 for hardware, 1 for soft-

ware). The specific counter selection is based on values defined within the Linux header

file /usr/include/linux/perf_event.h. For example, the perftype:counter pair 0:0

corresponds to hw_cpu_cycles (hardware counter for CPU cycles), while 1:2 refers to

sw_page_faults (software counter for page faults).

ROIperf operates on an application along with its designated ROIs, as detailed in Fig-

ure 7.2. ROIperf utilizes two primary methods to program hardware performance coun-

ters: (a) sampled counting of retired instructions or program counters and (b) continu-

ous monitoring of performance counters specified with ROIPERF_LIST. The sampled

counting is programmed using an overflow value and a callback function. When using

7.3 Methodology and Implementation Details 161

Program execution
Region of interest

(ROI)

Region Start Region End

counter_start
icount or (PC,count)

Program Start Program End

counter_end
icount or (PC,count)

User-specified counters (ROIPERF_PERFLIST)

Figure 7.3: The high-level execution flow of an application using the ROIperf tool.
Upon program start, user-defined performance counters are initialized. Measurements
are then activated at the start of ROI and remain active until the end of ROI. Hardware
instruction counts or address (PC) counts are employed to identify the ROI.

instruction count-based ROIs, two counters monitor user-mode PERF_COUNT_HW_-

INSTRUCTIONS, with overflow values set to the start and end instruction counts of the

ROI. Upon overflow, the callback function triggers, capturing the current system-wide

time using the Read Time-Stamp Counter (RDTSC) and the values of all the perfor-

mance counters programmed for continuous monitoring (defined by the ROIPERF_LIST

environment variable). This continuous monitoring mode allows tracking performance

counters specified in ROIPERF_LIST alongside sampled counting. An illustration of

these various actions taken by ROIperf can be found in Figure 7.3.

For ROIs defined by program counter (PC) and count values, a different approach is

employed. Here, two counters with perftype set to PERF_TYPE_BREAKPOINT tar-

get the start and end PCs of the ROI. The overflow values are set to the corresponding

count values specified for the ROI boundaries. Similar to sampled counting, the callback

function upon overflow outputs RDTSC values and the values of performance counters

from ROIPERF_LIST.

Our experiments revealed a significant performance difference between the techniques for

programming performance counters used in ROIperf. While PERF_COUNT_HW_-

INSTRUCTIONS with overflow handling proved highly efficient across all tested x86

processors, PERF_TYPE_BREAKPOINT exhibited higher overhead. This overhead

162 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

derives from the operating system trapping into the kernel on every execution of the

programmed PC to check for overflow using a software counter. This frequent trapping

can significantly perturb performance measurements, especially for ROIs with frequently

executed PCs.

To address this trade-off, we propose a hybrid approach for ROI specification. We rec-

ommend using PERF_TYPE_BREAKPOINT only for the ROI start, leveraging its

precise triggering mechanism. For the ROI end, we suggest employing a relative instruc-

tion count-based PERF_COUNT_HW_INSTRUCTIONS approach. This combination

prioritizes a precise start point while achieving faster monitoring for the ROI end (albeit

slightly imprecise, particularly for multi-threaded scenarios). Since ROIperf ultimately

focuses on the performance measurements between the start and end of the ROI, this

approach offers an acceptable solution.

ROIperf exhibits limitations when dealing with multi-threaded programs, as it focuses

on monitoring only the main thread (thread 0). Hence ROIperf starts hardware perfor-

mance counters for the core/processor where the main thread is running. Pin in probe

mode cannot monitor thread creation events. Consequently, there is no callback to

ROIperf when child threads are spawned during program execution. Therefore ROIperf

cannot monitor any children threads in a multi-threaded program. While ROIperf can-

not directly monitor child threads, the captured RDTSC values still reflect the total

execution time for the entire ROI, including the work done by child threads. This ap-

proach hinges on the assumption that the main thread remains active throughout the

ROIs, which means the counters specified using ROIPERF_PERFLIST will be counted

for the core/processor where the main thread is active.

7.4 Experimental Setup 163

7.4 Experimental Setup

7.4.1 Workloads Used

We use two benchmarks for our evaluation, SPEC CPU2017 and NAS Parallel Bench-

marks (NPB). For our single-threaded evaluations, we use the rate version of SPEC

CPU2017 benchmarks using training (train) inputs and reference (ref) inputs. For our

multi-threaded evaluations, we use the multi-threaded subset of SPEC CPU2017 bench-

marks (speed version). These benchmarks can spawn several threads that synchronize

and share memory. We configure the benchmarks with eight OpenMP threads. We also

use NPB version 3.3 (OpenMP-based) for our multi-threaded evaluations that are con-

figured to Class C inputs with eight threads. We present the evaluation results for all but

dc (data cube) benchmark in the NPB benchmark suite as it generates a huge amount of

data. We use active thread wait-policy for evaluating the SPEC CPU2017 benchmarks,

which means that the threads spin (user-level) at the synchronization point, whereas

passive policy is used for the NPB benchmarks for which the threads go to sleep while

waiting for the other threads at a synchronization point.

7.4.2 Sample Selection

For single-threaded sampling, we use PinPlay-based profiling methodologies involving

the PinPoint [24] tool, derived from the SimPoint [20] methodology. We split the ap-

plication every 200 million instructions. We also use a maxk of 50 for k-means clus-

tering. For sampling multi-threaded applications that use eight threads, we use the

LoopPoint methodology [149] with default settings. We split the applications target-

ing multi-threaded regions of size 800 million global (all-threads) instructions, always

aligning with a loop entry. The regions are represented as basic block vectors (BBVs),

clustered using k-means clustering with a maxk of 50. PinPlay processing, especially

164 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

logging, is quite expensive, and therefore, running region selection in a controlled envi-

ronment was not practical. Instead, region selection was done on machines with varying

microarchitectures and run-time libraries. But, in an ideal case, we are required to (a)

run all the experiments (region selection, simulation, ROIperf validation, etc.) on the

same microarchitecture and (b) package and reuse the system libraries so that we are

sure we control the simulation. For ROIperf-based evaluations, we chose two machines

with Broadwell and Skylake microarchitectures.

7.4.3 Simulators Used

We compare the effectiveness of ROIperf in sample validation against performance eval-

uation using simulators. For our experiments with the SPEC CPU2017 benchmarks,

we use an in-house simulator derived from Sniper [14], called CoreSim, for evaluations.

CoreSim allows for rapid yet fairly accurate simulation of x86 many-core systems that use

Intel SDE [227] as the simulation front-end. We configured CoreSim to simulate both

Intel Skylake [157] and Intel Cascade Lake [220] microarchitectures. We also use the

Sniper multi-core simulator [14, 252] version 8.0 (using Pin [116] front-end) for our eval-

uations with NPB benchmarks. We configured Sniper to simulate the Intel Gainestown

microarchitecture.

7.5 Evaluation

In this section, we aim to demonstrate the effectiveness of the ROIperf methodology

across different benchmarks.

7.5.1 Testing ROIperf Applicability

As discussed in Section 7.1, the repeatability of application results can be an issue for a

number of applications, both single-threaded and multi-threaded. For our evaluations,

7.5 Evaluation 165

we selected the applications that were not prone to this issue. We devised a pre-test for

the applications for repeatability, which is two-fold:

1. Do the thread-0 instruction counts from the region selection and ROIperf runs

exhibit a close match?

The cases where we found a difference of more than 10% were ruled out from

ROIperf evaluations. This test works well for single-threaded applications. For

multi-threaded programs, where run-to-run variation is expected due to different

amounts of synchronization code, the instruction count test may not be adequate.

2. Are the regions described using (PC, count) specifications executed on the test ma-

chine?

We tested this with a Pin-based tool to report ROI start and end events based on

(PC, count) ROI specification. If the ROIs are not being executed, this implies

subtle control flow diversion between the region selection and ROIperf runs. Any

cases with a substantial number of ROIs missed were ruled out.

We demonstrate the ROIperf methodology using simulation-based region validation as

the base case and compare the prediction errors reported by the simulation to those

reported by ROIperf. ROIperf enables quick fine-tuning of sampling parameters for

existing sampled simulation techniques like SimPoint or LoopPoint. We perform this

study for relatively shorter train input for SPEC CPU2017 runs as the simulation of ref

inputs is otherwise not practical.

7.5.2 Evaluation of Single-threaded Applications

We use the rate setup from SPEC CPU2017 benchmarks. The binaries used were com-

piled using GCC to use the AVX vector instructions. The simulator used was, CoreSim,

an SDE-based simulator modeling an Intel Skylake processor. ROIperf evaluations were

166 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

50
0.p

erl
be

nc
h_

r.1

50
0.p

erl
be

nc
h_

r.2

50
0.p

erl
be

nc
h_

r.3

50
0.p

erl
be

nc
h_

r.4

50
0.p

erl
be

nc
h_

r.5

50
2.g

cc_
r.1

50
2.g

cc_
r.2

50
2.g

cc_
r.3

50
5.m

cf_
r.1

52
0.o

mne
tpp

_r.
1

52
5.x

26
4_

r.1

54
1.l

eel
a_

r.1

54
8.e

xc
ha

ng
e2

_r.
1

55
7.x

z_
r.1

55
7.x

z_
r.2

0

2

4

6

8

10

ab
s.

pr
ed

ic
tio

n
er

ro
r%

sim:runtime roiperf:broadwell roiperf:skylake

Figure 7.4: Sampling error in predicting cycles-per-instructions (CPI) for single-
threaded workloads from the SPEC CPU2017 suite using train inputs. The errors were
measured using both a cycle-level simulator and the ROIperf tool running on Broadwell
and Skylake hardware platforms.

50
0.p

erl
be

nc
h_

r.1

50
0.p

erl
be

nc
h_

r.2

50
0.p

erl
be

nc
h_

r.3

50
2.g

cc_
r.1

50
2.g

cc_
r.2

50
2.g

cc_
r.3

50
5.m

cf_
r.1

50
7.c

act
uB

SSN_r.
1

50
8.n

am
d_

r.1

51
0.p

are
st_

r.1

51
1.p

ov
ray

_r.
1

51
9.l

bm
_r.

1

52
0.o

mne
tpp

_r.
1

52
1.w

rf_
r.1

52
3.x

ala
nc

bm
k_

r.1

52
5.x

26
4_

r.1

52
5.x

26
4_

r.2

52
5.x

26
4_

r.3

52
6.b

len
de

r_r
.1

52
7.c

am
4_

r.1

53
1.d

eep
sje

ng
_r.

1

54
1.l

eel
a_

r.1

54
4.n

ab
_r.

1

54
8.e

xc
ha

ng
e2

_r.
1

54
9.f

oto
nik

3d
_r.

1

55
4.r

om
s_r

.1

55
7.x

z_
r.1

55
7.x

z_
r.2

55
7.x

z_
r.3

0

2

4

6

8

10

ab
s.

R
D

TS
C

 e
rr

or
%

roiperf:broadwell roiperf:skylake

Figure 7.5: Sampling error in predicting the RDTSC values of the single-threaded
SPEC benchmarks using ref input.

done on two test machines, one with a Broadwell processor and another with a Sky-

lake processor. The region selection was done using the PinPoints methodology with a

slice-size of 200 million instructions and a maximum cluster count (maxk) of 50.

7.5.2.1 SPEC CPU2017 with train input

We first simulated the binaries running train input with CoreSim in two ways: (a) for the

entire program execution and (b) once each for each ROI selected by PinPoints (specifi-

cation based on instruction count). Prediction error for each benchmark was computed

7.5 Evaluation 167

using the simulated runtime, full program, and region projected. The longest-running

full-program simulation took five weeks to finish. We then used ROIperf using the exact

region specification and found prediction errors on two different test machines, one with

a Broadwell x86 processor and another with a Skylake x86 processor. We evaluated

ROIperf with the full-program and each region and computed prediction error based on

cycles-per-instruction (CPI) values reported as shown in Figure 7.2. The measurement

was repeated several times, and the average values were considered. The entire eval-

uation took a few hours, which is a significant improvement over the simulation-based

validation methodology. Figure 7.4 reports the prediction errors for simulation and

ROIperf-based validation. We see that while the absolute prediction error values differ,

the trends in prediction errors are the same between simulation-based and ROIperf-based

validation. This gives us confidence in using ROIperf as a much faster alternative to

simulation-based ROI validation.

7.5.2.2 SPEC CPU2017 with ref input

SPEC CPU2017 runs with ref input are much longer running compared to train input

runs. Simulation-based validation for ref input is therefore not practical as it would take

a number of months to finish full-program ref runs simulations with CoreSim. This is

where ROIperf-based simulation adds value. Since we are using native hardware as the

simulator, the evaluation times are much shorter. Figure 7.5 reports the prediction errors

for ROIperf-based validation of SPEC CPU2017 ref input runs on running Broadwell

and Skylake servers. ROIperf applicability testing (Section 7.5.1) revealed a significant

variation (>15%) in the instruction count between the native run on the test machine and

the profiling run. On the Skylake machine, all runs of 503.bwaves_r showed more than

50% difference between instruction count during profiling and during ROIperf run. We

observed the Skylake machine happened to have a different version of the math library

than the Broadwell machine, and the code executed on the two machines was quite

168 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

different, as measured by the instruction mixes on both machines. Security updates often

add input checks that can lead to significant slowdowns. For example, the libm library

on the Broadwell machine uses an optimization that removed the canonical input check

from pow(), which led to a 2.4× reduction in the instruction count for 503.bwaves_r.

7.5.3 Evaluation of Multi-threaded Applications

Evaluating synchronizing multi-threaded applications can be quite challenging [31]. Tools

like PinPlay [3] offer deterministic analysis of multi-threaded applications. While using

ROIperf, we estimate the performance using native hardware. For multi-threaded evalu-

ation, we used the OpenMP subset of the speed version of SPEC CPU2017 benchmarks.

The regions of interest (ROIs) of the benchmarks were selected using LoopPoint method-

ology using the settings as described in Section 7.4.2.

7.5.3.1 SPEC CPU2017 with train input

Figure 7.6 shows a comparison between the RDTSC prediction error using ROIperf

and runtime prediction error using CoreSim. The ROIs were simulated on CoreSim

with Cascade Lake microarchitecture specifications. We use 8-threaded SPEC CPU2017

benchmarks that use train inputs for this evaluation. The benchmarks use active thread

wait policy. We can observe very similar trends in the estimation errors, especially for

applications like 627.cam4_s.1.

7.5.3.2 NPB using Class C inputs

We repeat the comparison of prediction errors from ROIperf and simulation for NAS

Parallel Benchmarks (NPB) Class C input size. Figure 7.7 shows the runtime prediction

errors obtained from simulation (Sniper:Gainestown), and prediction errors for user-level

hardware CPU cycles and RDTSC using ROIperf. Again the error bars show similar

The results shown here have been filtered to exclude these specific cases.

7.6 Related Work 169

60
3.b

wav
es_

s.1

60
3.b

wav
es_

s.2

60
7.c

act
uB

SSN_s.
1

61
9.l

bm
_s.

1

62
1.w

rf_
s.1

62
7.c

am
4_

s.1

62
8.p

op
2_

s.1

63
8.i

mag
ick

_s.
1

64
4.n

ab
_s.

1

64
4.n

ab
_s.

2

64
9.f

oto
nik

3d
_s.

1

65
4.r

om
s_s

.1

65
7.x

z_
s.1

65
7.x

z_
s.2

0

5

10

15
ab

s.
pr

ed
ic

tio
n

er
ro

r%

sim:runtime roiperf:rdtsc

Figure 7.6: A comparison of RDTSC estimation error using ROIperf and runtime
estimation error using CoreSim simulator. The benchmark suite is SPEC CPU2017,
and the benchmarks use 8 threads, train inputs, and active wait policy. The ROIs are
identified using LoopPoint methodology.

bt.C cg.C ep.C ft.C is.C lu.C mg.C sp.C ua.C
0.0

2.5

5.0

7.5

10.0

12.5

ab
s.

pr
ed

ic
tio

n
er

ro
r%

sim:runtime roiperf:cycles roiperf:rdtsc

Figure 7.7: A comparison of simulation-based prediction errors with ROIperf results
for both HW_CPU_CYCLES and RDTSC projections on a Skylake Server. We use
NPB benchmarks that use Class C inputs, 8 threads and passive wait policy.

trends which signify the reliability of the results obtained using ROIperf.

7.6 Related Work

The overhead of the Linux perf_event counter interface that ROIperf uses is described

in prior works [253]. ROIperf uses the self-monitoring interface as described earlier and

hence is prone to various overheads, namely overheads for performance counter starting,

reading, reading multiple times, and stopping. The paper suggests turning off dynamic

170 ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

frequency scaling to avoid affecting the RDTSC instruction results. We did that for our

test machines. They also suggest using static linking to avoid dynamic link overhead of

the read() system call used to read performance counters.

In PinPoints [24], simulation regions selected for SPEC2000 Itanium programs using

SimPoint [20] were validated against hardware performance metrics. For evaluation, a

JIT-mode Pin tool was used to run until the start of the ROI, determined by instruction

count. After detaching from the application, the remaining execution was profiled using

a performance monitoring Linux tool, sampling hardware performance counters at slice-

size intervals. Unlike PinPoints, ROIperf does not detach from the application. This

allows for more precise ROI boundary monitoring, especially when using (PC, count)

specifications. ROIperf also supports variable-sized ROIs for both single-threaded and

multi-threaded programs.

7.7 Conclusion

We introduce ROIperf, a technique to validate workload sampling methodologies. ROIperf

leverages hardware performance counters to validate the representativeness of chosen

samples, which can be used in several ways to study the workload characteristics, core

interactions, cache behavior, etc., without requiring a simulator. ROIperf facilitates the

validation of workload sampling methodologies for large-scale workloads like the SPEC

CPU2017 benchmarks with reference inputs. Our analyses show that the reproducibil-

ity of program behavior across multiple executions is a prerequisite for obtaining stable

measurements. Simulators provide a controlled environment for performance estimation

and, especially in the case of multi-threaded applications, control the thread progress.

ROIperf could be extended to support compatibility beyond specific hardware platforms,

particularly towards the increasingly heterogeneous nature of modern applications.

Chapter 8
Conclusion and Future Work

In this chapter, we present a summary of the contributions of this thesis and lay out the

potential directions for future work.

8.1 Conclusion

There’s no real ending. It’s just the place where you stop the story.

— Frank Herbert

The thesis explores novel techniques for efficiently evaluating the performance of post-

Dennard systems using sampling. We first proposed LoopPoint, a sampled simulation

methodology that significantly reduces the simulation time of large general-purpose

multi-threaded workloads. LoopPoint methodology is integrated with widely used mi-

croarchitectural simulators like gem5 and Sniper. A follow-up work, Viper, enhanced the

accuracy and speed of LoopPoint by considering the hierarchical structure of program

execution. LoopPoint is effective for microarchitecture-level simulations, while Viper is

suitable for finer granularity in RTL-level simulations. Both these methodologies are

applicable only to static workloads. Existing sampled simulation methodologies are con-

172 Conclusion and Future Work

sidered insufficient for assessing the dynamic nature of evolving architectures. These

architectures integrate several runtime optimization techniques at both hardware and

software levels to enhance system performance. We proposed Pac-Sim, which is de-

signed for dynamically optimized software and hardware by performing region selection

and analysis online. Pac-Sim accurately evaluates dynamically scheduled multi-threaded

applications, accounting for runtime performance variability. The growing need for high-

performance computing (HPC) and artificial intelligence (AI) has driven the adoption

of heterogeneous computing systems that integrate diverse processing cores like CPUs

and GPUs. However, evaluating the performance of these systems remains a significant

challenge, often requiring substantial time and resources. To address this, we intro-

duce XPU-Point, a novel methodology designed to identify representative regions within

heterogeneous CPU-GPU applications. While workload sampling techniques identify

regions of interest within applications, their performance is typically validated using

simulations, which can still be time-consuming. However, validating the performance of

a selected sample against the full application is crucial. To address this, we proposed

ROIperf, which leverages native hardware performance counters, providing a quick and

accurate method to validate the representativeness of the regions of interest selected for

long-running workloads.

8.2 Future Work

We can only see a short distance ahead, but we can see plenty

there that needs to be done.
— Alan Turing

In this thesis, we addressed the significant challenge that arises due to the performance

disparity between hardware and its corresponding simulators. This bottleneck signifi-

cantly hinders the design space exploration for increasingly complex systems.

8.2 Future Work 173

While workload sampling, explored in this thesis, offers a solution by focusing on rep-

resentative subsets of the workload, it represents just one direction for further research.

Future investigations to explore complementary techniques for faster simulation include

hardware emulation techniques, GPU-based simulations, analytical models, etc. We

outline a few such directions below:

1. The characterization of emerging real-world workloads presents a significant chal-

lenge. With the increasing complexity of these workloads, like those found in mo-

bile and data center environments, the methodologies proposed in this thesis may

be inadequate. While this thesis highlights the potential of Pac-Sim in evaluating

compute-intensive general-purpose workloads, its applicability to other domains,

such as cloud or mobile workload classes, is a promising area of research. Current

approaches to GPU and heterogeneous CPU-GPU sampling, while effective in con-

trolled settings, exhibit limitations when dealing with real-world scenarios, such

as over-subscribed GPUs, dynamic kernels, and multi-GPU configurations. Lever-

aging neural networks for program phase identification presents an alternative for

BBVs or other signature vectors. Their ability to learn from program structure

and runtime states allows for the effective characterization of application regions

independent of the underlying ISA.

2. Accelerating cycle-accurate simulations remains a crucial area of research. The

traditional simulation takes an extremely long time by simulating the entire work-

load on the CPU alone. One approach to speed up simulation involves leveraging

profiling tools to understand the control flow of the workload, which can be used to

optimize the datapath and parallelize the simulation of independent components

across GPUs. In a similar direction, simulating CPU-GPU workloads can be accel-

erated by offloading the GPU kernel simulation onto actual GPUs. However, this

approach may necessitate frequent CPU-GPU synchronization. Additionally, com-

174 Conclusion and Future Work

bining simulators with analytical models of traditional microarchitectural struc-

tures offers another potential for simulation speedups.

3. While sampled simulation addresses the problem of long simulation times, this

introduces the challenge of warming up the microarchitectural state. Traditional

CPU warmup techniques, such as statistical warming and checkpointing, are un-

available for GPU systems and heterogeneous CPU-GPU systems, whereas func-

tional warming would incur a significant amount of time to be spent on simulations

just for microarchitectural state reconstruction. Leveraging machine learning tech-

niques on statistical profiles of relevant memory access patterns, branch predictor

behavior, and prefetcher accesses could enable the development of sophisticated

microarchitectural warmup methods.

4. While application checkpointing and deterministic replay have been established

for CPU workloads, extending these techniques to heterogeneous CPU-GPU envi-

ronments presents a significant research opportunity. For CPU workloads, ELFies

offer a widely adopted solution for capturing application state through executable

checkpoints. However, ELFies do not capture the system state, and system-level

checkpointing techniques using QEMU are essential to capture the entire system

state for accurate full-system simulation.

He thought he kept the universe alone;

For all the voice in answer he could wake

Was but the mocking echo of his own

From some tree-hidden cliff across the lake.

Some morning from the boulder-broken beach

He would cry out on life, that what it wants

Is not its own love back in copy speech,

But counter-love, original response.

Robert Frost

Bibliography

[1] SPEC CPU®2017 documentation index. http://spec.org/cpu2017/Docs/

index.html.

[2] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.

SMARTS: Accelerating microarchitecture simulation via rigorous statistical sam-

pling. In International Symposium on Computer Architecture (ISCA), pages 84–97,

June 2003.

[3] Harish Patil and Trevor E. Carlson. Pinballs: portable and shareable user-level

checkpoints for reproducible analysis and simulation. In Workshop on Reproducible

Research Methodologies (REPRODUCE), February 2014.

[4] Ferenc Bodon and Lajos Rónyai. Trie: an alternative data structure for data

mining algorithms. Mathematical and Computer Modelling, 38(7-9):739–751, 2003.

[5] Kenneth C Barr, Heidi Pan, Michael Zhang, and Krste Asanovic. Accelerating

multiprocessor simulation with a memory timestamp record. In International Sym-

posium on Performance Analysis of Systems and Software (ISPASS), pages 66–77,

March 2005.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

http://spec.org/cpu2017/Docs/index.html
http://spec.org/cpu2017/Docs/index.html

178 Conclusion and Future Work

Hill, and David A. Wood. The gem5 simulator. SIGARCH Computer Architecture

News, 39(2):1–7, August 2011.

[7] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. Accel-

sim: An extensible simulation framework for validated gpu modeling. In Interna-

tional Symposium on Computer Architecture (ISCA), pages 473–486. IEEE, 2020.

[8] Alen Sabu, Harish Patil, Wim Heirman, and Trevor E. Carlson. LoopPoint:

Checkpoint-driven sampled simulation for multi-threaded applications. In Inter-

national Symposium on High Performance Computer Architecture (HPCA), pages

604–618, 2022.

[9] G. E. Moore. Cramming more components onto integrated circuits, reprinted

from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State

Circuits Society Newsletter, 2006.

[10] Shekhar Borkar. Thousand core chips: a technology perspective. In Design Au-

tomation Conference (DAC), pages 746–749, 2007.

[11] Anant Agarwal and Markus Levy. The kill rule for multicore. In Proceedings of

the 44th annual Design Automation Conference, pages 750–753, 2007.

[12] Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. Single-chip hetero-

geneous computing: Does the future include custom logic, fpgas, and gpgpus? In

International Symposium on Microarchitecture (MICRO), pages 225–236. IEEE,

2010.

[13] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, But-

ler W Lampson, Daniel Sanchez, and Tao B Schardl. Theres plenty of room

at the top: What will drive computer performance after moores law? Science,

368(6495):eaam9744, 2020.

[14] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level of ab-

straction for scalable and accurate parallel multi-core simulation. In International

BIBLIOGRAPHY 179

Conference for High Performance Computing, Networking, Storage and Analysis

(SC), pages 52:1–52:12, November 2011.

[15] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.

IEEE Journal of Solid-State Circuits, 1974.

[16] Changxi Liu, Yifan Sun, and Trevor E. Carlson. Photon: A fine-grained sampled

simulation methodology for gpu workloads. In International Symposium on Mi-

croarchitecture (MICRO), page 12271241, 2023.

[17] Murali Annavaram, Ryan Rakvic, Marzia Polito, J-Y Bouguet, Richard Hankins,

and Bob Davies. The fuzzy correlation between code and performance predictabil-

ity. In International Symposium on Microarchitecture (MICRO), pages 93–104,

2004.

[18] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correla-

tion between code signatures and performance. In IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2005.

[19] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution

analysis to find periodic behavior and simulation points in applications. In Inter-

national Conference on Parallel Architectures and Compilation Techniques, pages

3–14, 2001.

[20] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automati-

cally characterizing large scale program behavior. In International Conference on

Architectural Support for Programming Languages and Operating Systems (ASP-

LOS), pages 45–57, October 2002.

[21] Erez Perelman, Greg Hamerly, and Brad Calder. Picking statistically valid and

early simulation points. In International Conference on Parallel Architectures and

Compilation Techniques, pages 244–255, 2003.

[22] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and pre-

180 Conclusion and Future Work

diction. In International Symposium on Computer Architecture (ISCA), pages

336–349, 2003.

[23] Greg Hamerly, Erez Perelman, and Brad Calder. How to use SimPoint to pick

simulation points. ACM SIGMETRICS Performance Evaluation Review, 31(4):25–

30, March 2004.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pin-

pointing representative portions of large Intel Itanium programs with dynamic in-

strumentation. In International Symposium on Microarchitecture (MICRO), pages

81–92, December 2004.

[25] Jeremy Lau, Erez Perelman, Greg Hamerly, Timothy Sherwood, and Brad Calder.

Motivation for variable length intervals and hierarchical phase behavior. In Inter-

national Symposium on Performance Analysis of Systems and Software (ISPASS),

pages 135–146, March 2005.

[26] Jeremy Lau, Erez Perelman, and Brad Calder. Selecting software phase markers

with code structure analysis. In International Symposium on Code Generation and

Optimization (CGO), pages 135–146, March 2006.

[27] Sina Hassani, Gabriel Southern, and Jose Renau. LiveSim: Going live with mi-

croarchitecture simulation. In International Symposium on High Performance

Computer Architecture (HPCA), pages 606–617, March 2016.

[28] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to guide

simultaneous multithreading simulation. In IEEE International Symposium on -

ISPASS Performance Analysis of Systems and Software, 2004, March 2004.

[29] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and James C. Hoe. Tur-

boSMARTS: Accurate microarchitecture simulation sampling in minutes. In In-

ternational Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS). ACM, 2005.

[30] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

BIBLIOGRAPHY 181

Hoe. SimFlex: Statistical sampling of computer system simulation. IEEE Micro,

26(4):18–31, 2006.

[31] A.R. Alameldeen and D.A. Wood. IPC considered harmful for multiprocessor

workloads. IEEE Micro, 26(4):8–17, 2006.

[32] T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of multi-

threaded applications. In International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 2–12, April 2013.

[33] E. K. Ardestani and J. Renau. ESESC: A fast multicore simulator using time-based

sampling. In International Symposium on High Performance Computer Architec-

ture (HPCA), pages 448–459, February 2013.

[34] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. BarrierPoint:

Sampled simulation of multi-threaded applications. In International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 2–12, March

2014.

[35] Stijn Eyerman and Lieven Eeckhout. Fine-grained dvfs using on-chip regulators.

ACM Transactions on Architecture and Code Optimization (TACO), 8(1):1–24,

2011.

[36] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret

Martonosi. An analysis of efficient multi-core global power management policies:

Maximizing performance for a given power budget. In International Symposium

on Microarchitecture (MICRO), pages 347–358, 2006.

[37] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. System level

analysis of fast, per-core dvfs using on-chip switching regulators. In International

Symposium on High Performance Computer Architecture (HPCA), pages 123–134,

2008.

[38] Sparsh Mittal, Zhao Zhang, and Jeffrey S Vetter. Flexiway: A cache energy saving

182 Conclusion and Future Work

technique using fine-grained cache reconfiguration. In International conference on

computer design (ICCD), pages 100–107. IEEE, 2013.

[39] Sparsh Mittal, Yanan Cao, and Zhao Zhang. Master: A multicore cache energy-

saving technique using dynamic cache reconfiguration. IEEE Transactions on very

large scale integration (VLSI) systems, 22(8):1653–1665, 2013.

[40] D.H. Albonesi. Selective cache ways: on-demand cache resource allocation. In

International Symposium on Microarchitecture (MICRO), pages 248–259, 1999.

[41] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra Fe-

dorova. Evaluation of the intel® core i7 turbo boost feature. In IEEE International

Symposium on Workload Characterization (IISWC), pages 188–197. IEEE, 2009.

[42] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell,

Xavier Martorell, and Judit Planas. Ompss: a proposal for programming hetero-

geneous multi-core architectures. Parallel processing letters, 21(02):173–193, 2011.

[43] T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé. TaskPoint: Sampled

simulation of task-based programs. In International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 296–306, April 2016.

[44] T. Grass, T. E. Carlson, A. Rico, G. Ceballos, E. Ayguadé, M. Casas, and

M. Moreto. Sampled simulation of task-based programs. Transactions on Com-

puters (TC), 68(2):255–269, 2019.

[45] Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S Lee. Tbpoint:

Reducing simulation time for large-scale gpgpu kernels. In International Parallel

and Distributed Processing Symposium (IPDPS), pages 437–446. IEEE, 2014.

[46] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N Green, Mathias Payer, and

Timothy G Rogers. Principal kernel analysis: A tractable methodology to simulate

scaled gpu workloads. In International Symposium on Microarchitecture (MICRO),

pages 724–737, 2021.

[47] Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, and

BIBLIOGRAPHY 183

Trevor E Carlson. ELFies: Executable region checkpoints for performance analysis

and simulation. In International Symposium on Code Generation and Optimiza-

tion (CGO), pages 126–136, February/March 2021.

[48] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,

Qianruo Li, Xin Li, Zuojun Li, et al. Towards developing high performance risc-

v processors using agile methodology. In 2022 55th IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 1178–1199. IEEE, 2022.

[49] W Snyder. Verilator: the fast free verilog simulator. URL: http://www. veripool.

org, 2012.

[50] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,

E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz,

J. Bachrach, and K. Asanovic. FireSim: FPGA-accelerated cycle-exact scale-out

system simulation in the public cloud. In International Symposium on Computer

Architecture (ISCA), pages 29–42, June 2018.

[51] Jeremy Lau, Stefan Schoemackers, and Brad Calder. Structures for phase classi-

fication. In IEEE International Symposium on-ISPASS Performance Analysis of

Systems and Software, 2004, pages 57–67. IEEE, 2004.

[52] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong.

Detecting phases in parallel applications on shared memory architectures. In In-

ternational Parallel Distributed Processing Symposium (IPDPS), April 2006.

[53] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro

Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied

machine learning at facebook: A datacenter infrastructure perspective. In Inter-

national Symposium on High Performance Computer Architecture (HPCA), pages

620–629. IEEE, 2018.

[54] TOP500. Top500 supercomputer sites. https://www.top500.org/, 2022. Ac-

cessed on November 16, 2022.

https://www.top500.org/

184 Conclusion and Future Work

[55] Cen Chen, Kenli Li, Aijia Ouyang, Zhuo Tang, and Keqin Li. Gpu-accelerated

parallel hierarchical extreme learning machine on flink for big data. IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, 47(10):2740–2753, 2017.

[56] Hai Jiang, Yi Chen, Zhi Qiao, Tien-Hsiung Weng, and Kuan-Ching Li. Scaling up

mapreduce-based big data processing on multi-gpu systems. Cluster Computing,

18:369–383, 2015.

[57] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: a system for large-scale machine learning. In Symposium on Operating

Systems Design and Implementation (OSDI), volume 16, pages 265–283. Savannah,

GA, USA, 2016.

[58] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An

automated {End-to-End} optimizing compiler for deep learning. In Symposium on

Operating Systems Design and Implementation (OSDI), pages 578–594, 2018.

[59] Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk,

Sohaib Sajid, and Martha A Kim. Fast computational gpu design with gt-pin. In

2015 IEEE International Symposium on Workload Characterization, pages 76–86.

IEEE, 2015.

[60] Mahmood Naderan-Tahan, Hossein SeyyedAghaei, and Lieven Eeckhout. Sieve:

Stratified gpu-compute workload sampling. In 2023 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 224–234.

IEEE, 2023.

[61] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,

Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,

Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an evaluation

of throughput computing on cpu and gpu. In Proceedings of the 37th annual

BIBLIOGRAPHY 185

international symposium on Computer architecture, pages 451–460, 2010.

[62] Humayun Khalid. Validating trace-driven microarchitectural simulations. IEEE

Micro, 20(6):76–82, 2000.

[63] Qinzhe Wu, Steven Flolid, Shuang Song, Junyong Deng, and Lizy K John. Invited

paper for the hot workloads special session hot regions in spec cpu2017. In 2018

IEEE International Symposium on Workload Characterization (IISWC), pages 71–

77. IEEE, 2018.

[64] Haiyang Han and Nikos Hardavellas. Public release and validation of spec cpu2017

pinpoints. arXiv preprint arXiv:2112.06981, 2021.

[65] Rajat Todi. Speclite: using representative samples to reduce spec cpu2000 work-

load. In Proceedings of the Fourth Annual IEEE International Workshop on Work-

load Characterization (WWC-4), pages 15–23. IEEE, 2001.

[66] Performance monitoring in the intel 64 and ia-32 architectures software de-

velopers manual, volume 3b. https://www.intel.com/content/www/us/

en/architecture-and-technology/64-ia-32-architectures-software-

developer-vol-3b-part-2-manual.html.

[67] Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In 2008 IEEE

International Conference on Computer Design, pages 397–403. IEEE, 2008.

[68] Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John. Invited paper for the hot

workloads special session hot regions in SPEC CPU2017. In International Sympo-

sium on Workload Characterization (IISWC), pages 71–77, 2018.

[69] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. Wait of a decade:

Did spec cpu 2017 broaden the performance horizon? In 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 271–282.

IEEE, 2018.

[70] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent workload

characterization. IEEE micro, 27(3):63–72, 2007.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html

186 Conclusion and Future Work

[71] Yakun Sophia Shao and David Brooks. Isa-independent workload characterization

and its implications for specialized architectures. In 2013 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages

245–255. IEEE, 2013.

[72] Alaa R Alameldeen, Carl J Mauer, Min Xu, Pacia J Harper, Milo MK Martin,

Daniel J Sorin, Mark D Hill, and David A Wood. Evaluating non-deterministic

multi-threaded commercial workloads. In Workshop on Computer Architecture

Evaluation using Commercial Workloads (CAECW), February 2002.

[73] A.R. Alameldeen and D.A. Wood. Variability in architectural simulations of multi-

threaded workloads. In International Symposium on High-Performance Computer

Architecture (HPCA), pages 7–18, February 2003.

[74] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation

techniques for storage hierarchies. IBM Systems journal, 9(2):78–117, 1970.

[75] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. ACM

SIGPLAN Notices, 39(11):165–176, 2004.

[76] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus inter-

pretability of classifications. biometrics, 21:768–769, 1965.

[77] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.

PinPlay: A framework for deterministic replay and reproducible analysis of parallel

programs. In International Symposium on Code Generation and Optimization

(CGO), pages 2–11, April 2010.

[78] Andreas Sandberg, Nikos Nikoleris, Trevor E. Carlson, Erik Hagersten, Stefanos

Kaxiras, and David Black-Schaffer. Full speed ahead: Detailed architectural simu-

lation at near-native speed. In 2015 IEEE International Symposium on Workload

Characterization, pages 183–192, 2015.

[79] M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simulation

BIBLIOGRAPHY 187

speed using matched-pair comparison. In International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pages 89–99, March 2005.

[80] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and Daniel

Ortega. Cotson: infrastructure for full system simulation. ACM SIGOPS Operating

Systems Review, 43(1):52–61, 2009.

[81] Alex Skaletsky, Konstantin Levit-Gurevich, Michael Berezalsky, Yulia Kuznetcova,

and Hila Yakov. Flexible binary instrumentation framework to profile code running

on intel gpus. In 2022 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 109–120. IEEE, 2022.

[82] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy John, Hai Jin, and

Chengzhong Xu. Accelerating gpgpu architecture simulation. In Proceedings of

the ACM SIGMETRICS/international conference on Measurement and modeling

of computer systems, pages 331–332, 2013.

[83] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin,

Chengzhong Xu, and Junmin Wu. Gpgpu-minibench: accelerating gpgpu micro-

architecture simulation. IEEE Transactions on Computers, 64(11):3153–3166,

2015.

[84] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. A mech-

anistic performance model for superscalar out-of-order processors. ACM Transac-

tions on Computer Systems (TOCS), 27(2):1–37, 2009.

[85] S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout. RPPM: Rapid

performance prediction of multithreaded workloads on multicore processors. In

International Symposium on Performance Analysis of Systems and Software (IS-

PASS), pages 257–267, March 2019.

[86] David Eklov and Erik Hagersten. Statstack: Efficient modeling of lru caches.

In 2010 IEEE International Symposium on Performance Analysis of Systems &

Software (ISPASS), pages 55–65. IEEE, 2010.

188 Conclusion and Future Work

[87] Sander De Pestel, Stijn Eyerman, and Lieven Eeckhout. Micro-architecture in-

dependent branch behavior characterization. In 2015 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 135–144.

IEEE, 2015.

[88] John W Haskins and Kevin Skadron. Memory reference reuse latency: Accelerated

warmup for sampled microarchitecture simulation. In 2003 IEEE International

Symposium on Performance Analysis of Systems and Software. ISPASS 2003.,

pages 195–203. IEEE, 2003.

[89] Lieven Eeckhout, Yue Luo, Koen De Bosschere, and Lizy K John. Blrl: Accurate

and efficient warmup for sampled processor simulation. The Computer Journal,

48(4):451–459, 2005.

[90] Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E. Carlson. Di-

rected statistical warming through time traveling. In International Symposium on

Microarchitecture (MICRO), pages 1037–1049, October 2019.

[91] Nikos Nikoleris, Andreas Sandberg, Erik Hagersten, and Trevor E Carlson. Cool-

sim: Statistical techniques to replace cache warming with efficient, virtualized

profiling. In 2016 International Conference on Embedded Computer Systems: Ar-

chitectures, Modeling and Simulation (SAMOS), pages 106–115. IEEE, 2016.

[92] Michael Van Biesbrouck, Brad Calder, and Lieven Eeckhout. Efficient sampling

startup for simpoint. IEEE Micro, 26(4):32–42, 2006.

[93] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate microarchitec-

tural simulation of thousand-core systems. In International Symposium on Com-

puter Architecture (ISCA), pages 475–486, June 2013.

[94] I Synopsys. Vcs–functional verification solution, 2014.

[95] Prasun Gera, Hyojong Kim, Hyesoon Kim, Sunpyo Hong, Vinod George, and Chi-

Keung Luk. Performance characterisation and simulation of intel’s integrated gpu

BIBLIOGRAPHY 189

architecture. In 2018 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 139–148. IEEE, 2018.

[96] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2sim: A simulation framework for cpu-gpu computing. In 2012 21st Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT),

pages 335–344. IEEE, 2012.

[97] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. gem5-

gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters,

14(1):34–36, 2014.

[98] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane

Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.

Mgpusim: enabling multi-gpu performance modeling and optimization. In Inter-

national Symposium on Computer Architecture (ISCA), pages 197–209, 2019.

[99] Bradford M Beckmann and Anthony Gutierrez. The amd gem5 apu simulator:

Modeling heterogeneous systems in gem5. In Tutorial at the International Sympo-

sium on Microarchitecture (MICRO), 2015.

[100] Anthony Gutierrez, Bradford M Beckmann, Alexandru Dutu, Joseph Gross,

Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Bran-

don Potter, Sooraj Puthoor, et al. Lost in abstraction: Pitfalls of analyzing gpus

at the intermediate language level. In 2018 IEEE International Symposium on

High Performance Computer Architecture (HPCA), pages 608–619. IEEE, 2018.

[101] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

Analyzing cuda workloads using a detailed gpu simulator. In 2009 IEEE interna-

tional symposium on performance analysis of systems and software, pages 163–174.

IEEE, 2009.

[102] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish Chat-

terjee, Nan Jiang, and David Nellans. Need for speed: Experiences building a

190 Conclusion and Future Work

trustworthy system-level gpu simulator. In 2021 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), pages 868–880. IEEE, 2021.

[103] Karthik Ganesan and Lizy K John. Maximum multicore power (mampo) an au-

tomatic multithreaded synthetic power virus generation framework for multicore

systems. In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–12, 2011.

[104] Siddharth Nilakantan, Karthik Sangaiah, Ankit More, Giordano Salvadory, Baris

Taskin, and Mark Hempstead. Synchrotrace: synchronization-aware architecture-

agnostic traces for light-weight multicore simulation. In International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages 278–287.

IEEE, 2015.

[105] Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and Lizy K John.

Statistical pattern based modeling of gpu memory access streams. In Proceedings

of the 54th Annual Design Automation Conference 2017, pages 1–6, 2017.

[106] Mingyu Liang, Wenyin Fu, Louis Feng, Zhongyi Lin, Pavani Panakanti, Shengbao

Zheng, Srinivas Sridharan, and Christina Delimitrou. Mystique: Enabling accurate

and scalable generation of production ai benchmarks. In International Symposium

on Computer Architecture (ISCA), pages 1–13, 2023.

[107] Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh

Ketkar, and Christina Delimitrou. Ditto: End-to-end application cloning for net-

worked cloud services. In International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 2, pages 222–236, 2023.

[108] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX annual

technical conference, FREENIX Track, page 41, 2005.

[109] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-

tav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt

Werner. Simics: A full system simulation platform. Computer, 35(2):50–58, 2002.

BIBLIOGRAPHY 191

[110] A. J. KleinOsowski and D. J. Lilja. Minnespec: A new SPEC benchmark work-

load for simulation-based computer architecture research. Computer Architecture

Letters (CAL), 1(1):7–7, 2002.

[111] Robert H. Bell and Lizy K. John. Improved automatic testcase synthesis for

performance model validation. In International Conference on Supercomputing

(SC), pages 111–120, June 2005.

[112] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,

and Maurice Yarrow. The NAS parallel benchmarks 2.0. Technical report, NAS-

95-020, NASA Ames Research Center, 1995.

[113] Edward W Forgy. Cluster analysis of multivariate data: efficiency versus inter-

pretability of classifications. Biometrics, 21:768–769, 1965.

[114] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics,

pages 461–464, 1978.

[115] Thomas F Wenisch, Roland E Wunderlich, Babak Falsafi, and James C Hoe. Sim-

ulation sampling with live-points. In International Symposium on Performance

Analysis of Systems and Software (ISPASS), pages 2–12, March 2006.

[116] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Conference

on Programming Language Design and Implementation (PLDI), pages 190–200,

June 2005.

[117] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC CPU2017:

Next-generation compute benchmark. In International Conference on Performance

Engineering (ICPE), pages 41–42, April 2018.

[118] Ankur Limaye and Tosiron Adegbija. A workload characterization of the SPEC

CPU2017 benchmark suite. In International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 190–200, April 2018.

192 Conclusion and Future Work

[119] E Barszcz, J Barton, L Dagum, P Frederickson, T Lasinski, R Schreiber,

V Venkatakrishnan, S Weeratunga, D Bailey, D Browning, et al. The NAS parallel

benchmarks. In International Journal of Supercomputer Applications, 1991.

[120] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Si-

mon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks

summary and preliminary results. In Conference on Supercomputing (SC), pages

158–165, 1991.

[121] Haoqiang Jin, Michael Frumkin, and Jerry Yan. The OpenMP implementation

of NAS parallel benchmarks and its performance. Technical report, NAS-99-011,

NASA Ames Research Center, October 1999.

[122] DCFG generation with PinPlay. https://software.intel.com/content/www/

us/en/develop/articles/pintool-dcfg.html.

[123] C. Yount, H. Patil, and M. S. Islam. Graph-matching-based simulation-region se-

lection for multiple binaries. In International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 52–61, March 2015.

[124] C. Pereira, H. Patil, and B. Calder. Reproducible simulation of multi-threaded

workloads for architecture design exploration. In IEEE International Symposium

on Workload Characterization (IISWC), pages 173–182, September 2008.

[125] OpenMP 3.1 API C/C++ Syntax Quick Reference Card. https://www.openmp.

org/wp-content/uploads/OpenMP3.1-CCard.pdf.

[126] Tong Li, Alvin R Lebeck, and Daniel J Sorin. Spin detection hardware for improved

management of multithreaded systems. Transactions on Parallel and Distributed

Systems (TPDS), 17(6):508–521, 2006.

[127] S. Van den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson, D. Black-

Schaffer, E. Hagersten, and L. Eeckhout. Analytical processor performance and

https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html
https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf

BIBLIOGRAPHY 193

power modeling using micro-architecture independent characteristics. Transactions

on Computers (TC), 65(12):3537–3551, 2016.

[128] S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson, D. Black-

Schaffer, E. Hagersten, and L. Eeckhout. Micro-architecture independent ana-

lytical processor performance and power modeling. In International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 32–41, March

2015.

[129] A. A. Nair and L. K. John. Simulation points for SPEC CPU 2006. In International

Conference on Computer Design (ICCD), pages 397–403, October 2008.

[130] Xinnian Zheng, Haris Vikalo, Shuang Song, Lizy K John, and Andreas Gerstlauer.

Sampling-based binary-level cross-platform performance estimation. In DATE,

2017.

[131] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster

and more flexible program phase analysis. Journal of Instruction Level Parallelism,

7(4):1–28, 2005.

[132] Timothy Sherwood and Brad Calder. Time varying behavior of programs. In UC

San Diego, 1999.

[133] Checkpoint/restore in userspace.

[134] CRIU integration with docker.

[135] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Ro-

drigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan

Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-

Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas

Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,

Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza

194 Conclusion and Future Work

Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias

Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-

ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,

Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,

Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,

Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.

Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,

Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian Weis,

David A. Wood, Hongil Yoon, and Éder F. Zulian. The gem5 simulator: Version

20.0+. arXiv preprint arXiv:2007.03152, 2020.

[136] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei

Huang. From RTL to CUDA: A GPU acceleration flow for RTL simulation with

batch stimulus. In International Conference on Parallel Processing (ICPP), pages

1–12, 2022.

[137] Fares Elsabbagh, Shabnam Sheikhha, Victor A Ying, Quan M Nguyen, Joel S

Emer, and Daniel Sanchez. Accelerating rtl simulation with hardware-software

co-design. In Symposium on Microarchitecture (MICRO23), 2023.

[138] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr

Pourghannad, Ritik Raj, and James R Larus. Manticore: Hardware-accelerated

RTL simulation with static bulk-synchronous parallelism. In International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 219–237, 2023.

[139] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.

DIABLO: A warehouse-scale computer network simulator using FPGAs. In In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 207–221, 2015.

[140] William Lloyd Bircher and Lizy John. Predictive power management for multi-core

BIBLIOGRAPHY 195

processors. In International Symposium on Computer Architecture, pages 243–255.

Springer, 2010.

[141] Andreas Diavastos and Pedro Trancoso. Switches: A lightweight runtime for

dataflow execution of tasks on many-cores. ACM Transactions on Architecture

and Code Optimization (TACO), 14(3):1–23, 2017.

[142] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M Gillies. Mojo: A

dynamic optimization system. In 3rd ACM Workshop on Feedback-Directed and

Dynamic Optimization (FDDO-3), pages 81–90, 2000.

[143] Neeraj Kulkarni, Feng Qi, and Christina Delimitrou. Pliant: Leveraging approx-

imation to improve datacenter resource efficiency. In 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 159–171.

IEEE, 2019.

[144] Michael J Voss and Rudolf Eigemann. High-level adaptive program optimization

with adapt. In Proceedings of the eighth ACM SIGPLAN symposium on Principles

and practices of parallel programming, pages 93–102, 2001.

[145] Xin You, Changxi Liu, Hailong Yang, Pengbo Wang, Zhongzhi Luan, and Depei

Qian. Vectorizing spmv by exploiting dynamic regular patterns. In Proceedings of

the 51st International Conference on Parallel Processing, pages 1–12, 2022.

[146] Chuntao Jiang, Zhibin Yu, Hai Jin, Chengzhong Xu, Lieven Eeckhout, Wim Heir-

man, Trevor E. Carlson, and Xiaofei Liao. Pcantorsim: Accelerating parallel ar-

chitecture simulation through fractal-based sampling. ACM Trans. Archit. Code

Optim., 10(4), dec 2013.

[147] R.L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for

storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[148] Ayose Falcón, Paolo Faraboschi, and Daniel Ortega. Combining simulation and

virtualization through dynamic sampling. In 2007 IEEE International Symposium

on Performance Analysis of Systems & Software, pages 72–83. IEEE, 2007.

196 Conclusion and Future Work

[149] LoopPoint source code. https://github.com/nus-comparch/looppoint.

[150] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Abdoulaye

Gamatie, Gilles Sassatelli, and Chris Adeniyi-Jones. A trace-driven approach for

fast and accurate simulation of manycore architectures. In The 20th Asia and

South Pacific Design Automation Conference, pages 707–712. IEEE, 2015.

[151] Joshua L Kihm, Samuel D Strom, and Daniel A Connors. Phase-guided small-

sample simulation. In 2007 IEEE International Symposium on Performance Anal-

ysis of Systems & Software, pages 84–93. IEEE, 2007.

[152] Marc Casas, Harald Servat, Rosa M. Badia, and Jesús Labarta. Extracting the

optimal sampling frequency of applications spectral analysis. Concurrency and

Computation: Practice and Experience, 24:237–259, 03 2012.

[153] Sanjoy Dasgupta. Experiments with random projection. In Proceedings of the

Sixteenth conference on Uncertainty in artificial intelligence, pages 143–151, 2000.

[154] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings

of the 20th international conference on Machine Learning (ICML-03), pages 147–

153, 2003.

[155] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, January 2011.

[156] Trevor E Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-

hout. An evaluation of high-level mechanistic core models. ACM Transactions on

Architecture and Code Optimization (TACO), 11(3):1–25, 2014.

[157] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Ra-

hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside

6th-generation intel core: New microarchitecture code-named skylake. IEEE Mi-

cro, 37(2):52–62, 2017.

[158] Irma Esmer Papazian. New 3rd gen intelő xeonő scalable processor (codename:

Ice lake-sp). In IEEE Hot Chips Symposium (HCS), pages 1–22, 2020.

https://github.com/nus-comparch/looppoint

BIBLIOGRAPHY 197

[159] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé,

Jesús Labarta, and Mateo Valero. Parsecss: Evaluating the impact of task par-

allelism in the parsec benchmark suite. ACM Transactions on Architecture and

Code Optimization (TACO), 12(4):1–22, 2015.

[160] Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson. Noreba: A compiler-

informed non-speculative out-of-order commit processor. In Proceedings of the

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’21, page 182193, New York, NY,

USA, 2021. Association for Computing Machinery.

[161] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. Turnpike:

Lightweight soft error resilience for in-order cores. In MICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page

654666, New York, NY, USA, 2021. Association for Computing Machinery.

[162] Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur. En-

abling branch-mispredict level parallelism by selectively flushing instructions. In

EEE/ACM International Symposium on Microarchitecture (MICRO), pages 767–

778, 2021.

[163] M Deilmann et al. A guide to vectorization with intel c++ compilers. Intel

Corporation, pages 20–21, 2012.

[164] Alen Sabu, Changxi Liu, and Trevor E. Carlson. Viper: Utilizing hierarchical

program structure to accelerate multi-core simulation. IEEE Access, 12:17669–

17678, 2024.

[165] Shoaib Akram, Jennifer B Sartor, and Lieven Eeckhout. Dvfs performance predic-

tion for managed multithreaded applications. In IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), pages 12–23. IEEE,

2016.

[166] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,

198 Conclusion and Future Work

and Pablo Villalobos. Compute trends across three eras of machine learning. In

International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,

2022.

[167] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In International

Symposium on Computer Architecture, pages 365–376, 2011.

[168] Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communi-

cations of the ACM, 54(5):67–77, 2011.

[169] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics

hardware. ACM transactions on graphics (TOG), 23(3):777–786, 2004.

[170] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.

In-datacenter performance analysis of a tensor processing unit. In International

Symposium on Computer Architecture (ISCA), pages 1–12, 2017.

[171] William S. Carter, Ic Duong, R. R. Freman, Henry Hsieh, Jason Y. Ja, John E.

Mahoney, N. T. Ngo, and S. L. Sac. A user programmable reconfigurable logic

array. In Proc. Custom Integrated Circuits Conf., pages 515–521, 1986.

[172] Vıctor Garcıa, Juan Gomez-Luna, Thomas Grass, Alejandro Rico, Eduard

Ayguade, and Antonio J Pena. Evaluating the effect of last-level cache sharing

on integrated gpu-cpu systems with heterogeneous applications. In International

Symposium on Workload Characterization (IISWC), pages 1–10. IEEE, 2016.

[173] Mark D Hill and Vijay Janapa Reddi. Accelerator-level parallelism. Communica-

tions of the ACM, 64(12):36–38, 2021.

[174] Gene M Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

computer conference, pages 483–485, 1967.

BIBLIOGRAPHY 199

[175] Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B Baden, and Dean M

Tullsen. Redefining the role of the cpu in the era of cpu-gpu integration. IEEE

Micro, 32(6):4–16, 2012.

[176] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent

dynamic optimization system. In Proceedings of the ACM SIGPLAN conference

on Programming language design and implementation, page 112, New York, NY,

USA, 2000. Association for Computing Machinery.

[177] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and imple-

mentation of a dynamic optimization framework for windows. In 4th ACM work-

shop on feedback-directed and dynamic optimization (FDDO-4), page 20, 2001.

[178] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit:

A dynamic binary instrumentation framework for nvidia gpus. In IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 372–383, 2019.

[179] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-

rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[180] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint

arXiv:2307.09288, 2023.

[181] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste

Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,

et al. Gemini: a family of highly capable multimodal models. arXiv preprint

arXiv:2312.11805, 2023.

[182] Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro,

2023.

[183] Kai Yuan, Christoph Bauinger, Xiangyi Zhang, Pascal Baehr, Matthias Kirch-

200 Conclusion and Future Work

hart, Darius Dabert, Adrien Tousnakhoff, Pierre Boudier, and Michael Paulitsch.

Fully-fused multi-layer perceptrons on intel data center gpus. arXiv preprint

arXiv:2403.17607, 2024.

[184] XPU-Point source code. https://github.com/nus-comparch/xpupoint, 2025.

[185] Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor, Kim

Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady Tal.

Analyzing parallel programs with pin. Computer, 43(3):34–41, 2010.

[186] Linux. Linux programmers manual. https://man7.org/linux/man-pages/man8/

ld.so.8.html, 2024.

[187] Gordon E Moore et al. Progress in digital integrated electronics. In Electron

devices meeting, volume 21, pages 11–13. Washington, DC, 1975.

[188] Herb Sutter et al. The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobbs journal, 30(3):202–210, 2005.

[189] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata

Ausavarungnirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R

Das. Managing gpu concurrency in heterogeneous architectures. In IEEE/ACM

international symposium on microarchitecture, pages 114–126. IEEE, 2014.

[190] Joel Hestness, Stephen W Keckler, and David A Wood. Gpu computing pipeline

inefficiencies and optimization opportunities in heterogeneous cpu-gpu processors.

In 2015 IEEE International Symposium on Workload Characterization, pages 87–

97. IEEE, 2015.

[191] Nvidia gh200 grace hopper superchip architecture. https://resources.nvidia.

com/en-us-grace-cpu/nvidia-grace-hopper/, 2023.

[192] Debendra Das Sharma. Compute express link. CXL Consortium White Paper,

2019.

[193] Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink inter-

connect. IEEE Micro, 37(2):7–17, 2017.

https://github.com/nus-comparch/xpupoint
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper/
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper/

BIBLIOGRAPHY 201

[194] DARPA. Common heterogeneous integration and ip reuse strategies (chips).

https://www.darpa.mil/program/common-heterogeneous-integration-and-

ip-reuse-strategies, 2024.

[195] CP Wong and Michelle M Wong. Recent advances in plastic packaging of flip-

chip and multichip modules (mcm) of microelectronics. IEEE Transactions on

Components and Packaging Technologies, 22(1):21–25, 1999.

[196] Arik Gihon. Lunar lake architecture session. In 2024 IEEE Hot Chips 36 Sympo-

sium (HCS), pages 1–49. IEEE Computer Society, 2024.

[197] Gabriel H Loh, Michael J Schulte, Mike Ignatowski, Vignesh Adhinarayanan,

Shaizeen Aga, Derrick Aguren, Varun Agrawal, Ashwin M Aji, Johnathan Al-

sop, Paul Bauman, et al. A research retrospective on amd’s exascale computing

journey. In International Symposium on Computer Architecture (ISCA), pages 1–

14, 2023.

[198] Alan Smith, Gabriel H Loh, Michael J Schulte, Mike Ignatowski, Samuel Naffziger,

Mike Mantor, Mark Fowler, Nathan Kalyanasundharam, Vamsi Alla, Nicholas

Malaya, Joseph L. Greathouse, Eric Chapman, and Raja Swaminathan. Realizing

the amd exascale heterogeneous processor vision. In International Symposium on

Computer Architecture (ISCA), 2024.

[199] Boris Krasnopolsky and Alexey Medvedev. Acceleration of large scale openfoam

simulations on distributed systems with multicore cpus and gpus. In Parallel

Computing: On the Road to Exascale, pages 93–102. IOS Press, 2016.

[200] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,

Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie

Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model training

on gpu clusters using megatron-lm. In International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2021.

[201] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla:

https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies

202 Conclusion and Future Work

A unified graphics and computing architecture. IEEE micro, 28(2):39–55, 2008.

[202] David Blythe. The xe gpu architecture. In 2020 IEEE Hot Chips 32 Symposium

(HCS), pages 1–27. IEEE Computer Society, 2020.

[203] Michael J Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901–1909, 1966.

[204] Guei-Yuan Lueh, Kaiyu Chen, Gang Chen, Joel Fuentes, Wei-Yu Chen, Fangwen

Fu, Hong Jiang, Hongzheng Li, and Daniel Rhee. C-for-metal: High performance

simd programming on intel gpus. In 2021 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO), pages 289–300. IEEE, 2021.

[205] Kenneth L Clarkson. An algorithm for approximate closest-point queries. In

Symposium on Computational Geometry, pages 160–164, 1994.

[206] Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction. Journal

of Machine Learning Research, 3(Mar):1307–1331, 2003.

[207] Yuanwei Fang, Zihao Liu, Yanheng Lu, Jiawei Liu, Jiajie Li, Yi Jin, Jian Chen,

Yenkuang Chen, Hongzhong Zheng, and Yuan Xie. Nps: A framework for accurate

program sampling using graph neural network. arXiv preprint arXiv:2304.08880,

2023.

[208] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for

clustering analysis. In International conference on machine learning, pages 478–

487. PMLR, 2016.

[209] Standard Performance Evaluation Corporation (SPEC). Specaccel® 2023 bench-

mark. https://www.spec.org/accel2023/, 2023.

[210] Junjie Li, Alexander Bobyr, Swen Boehm, William Brantley, Holger Brunst, Aure-

lien Cavelan, Sunita Chandrasekaran, Jimmy Cheng, Florina M. Ciorba, Mathew

Colgrove, Tony Curtis, Christopher Daley, Mauricio Ferrato, Mayara Gimenes

de Souza, Nick Hagerty, Robert Henschel, Guido Juckeland, Jeffrey Kelling, Kelvin

Li, Ron Lieberman, Kevin McMahon, Egor Melnichenko, Mohamed Ayoub Neggaz,

https://www.spec.org/accel2023/

BIBLIOGRAPHY 203

Hiroshi Ono, Carl Ponder, Dave Raddatz, Severin Schueller, Robert Searles, Fe-

dor Vasilev, Veronica Melesse Vergara, Bo Wang, Bert Wesarg, Sandra Wienke,

and Miguel Zavala. Spechpc 2021 benchmark suites for modern hpc systems.

In ACM/SPEC International Conference on Performance Engineering, ICPE ’22,

page 1516, New York, NY, USA, 2022. Association for Computing Machinery.

[211] Garrett M Morris, David S Goodsell, Ruth Huey, William E Hart, Scott Halliday,

Rik Belew, and Arthur J Olson. Autodock. Automated docking of flexible ligands

to receptor-User Guide, 2001.

[212] Leonardo Solis-Vasquez, Edward Mascarenhas, and Andreas Koch. Experiences

migrating CUDA to SYCL: A molecular docking case study. In International

Workshop on OpenCL (IWOCL). ACM, 2023.

[213] Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F

Sanner, Andreas Koch, and Stefano Forli. Accelerating autodock4 with gpus

and gradient-based local search. Journal of chemical theory and computation,

17(2):1060–1073, 2021.

[214] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C

Smith, Berk Hess, and Erik Lindahl. Gromacs: High performance molecular simu-

lations through multi-level parallelism from laptops to supercomputers. SoftwareX,

1:19–25, 2015.

[215] Intel extension for PyTorch sources. https://github.com/intel/intel-

extension-for-pytorch/.

[216] Efraim Rotem, Adi Yoaz, Lihu Rappoport, Stephen J Robinson, Julius Yuli Man-

delblat, Arik Gihon, Eliezer Weissmann, Rajshree Chabukswar, Vadim Basin, Rus-

sell Fenger, et al. Intel alder lake cpu architectures. IEEE Micro, 42(3):13–19, 2022.

[217] Irma Esmer Papazian. New 3rd gen intel® xeon® scalable processor (codename:

Ice lake-sp). In Hot Chips Symposium, pages 1–22, 2020.

https://github.com/intel/intel-extension-for-pytorch/
https://github.com/intel/intel-extension-for-pytorch/

204 Conclusion and Future Work

[218] Hong Jiang. Intel’s ponte vecchio gpu: Architecture, systems & software. In 2022

IEEE Hot Chips 34 Symposium (HCS), pages 1–29. IEEE Computer Society, 2022.

[219] Nevine Nassif, Ashley O Munch, Carleton L Molnar, Gerald Pasdast, Sitaraman V

Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikrishnan Venkataraman,

Sireesha Kandula, et al. Sapphire rapids: The next-generation intel xeon scalable

processor. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),

volume 65, pages 44–46. IEEE, 2022.

[220] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,

Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedara-

man, et al. Cascade lake: Next generation intel xeon scalable processor. IEEE

Micro, 39(2):29–36, 2019.

[221] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny

Krashinsky. Nvidia a100 tensor core gpu: Performance and innovation. IEEE

Micro, 41(2):29–35, 2021.

[222] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Ra-

hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside

6th-generation intel core: New microarchitecture code-named skylake. IEEE Mi-

cro, 37(2):52–62, 2017.

[223] oneAPI Specification.

[224] Intel. Intel oneapi. https://www.intel.com/content/www/us/en/developer/

tools/oneapi/toolkits.html, 2023.

[225] NVIDIA. NVIDIA CUDA Toolkit Documentation, 2024.

[226] Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman,

Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel,

Wen-Mei W Hwu, et al. Spec accel: A standard application suite for measuring

hardware accelerator performance. In International Workshop on Performance

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

BIBLIOGRAPHY 205

Modeling, Benchmarking and Simulation of High Performance Computer Systems,

pages 46–67. Springer, 2014.

[227] Intel Software Development Emulator (Intel SDE). https://www.intel.com/

software/sde.

[228] Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. Gromacs: A

message-passing parallel molecular dynamics implementation. Computer physics

communications, 91(1-3):43–56, 1995.

[229] The GROMACS molecular simulation toolkit. https://github.com/gromacs/

gromacs.

[230] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. Advances

in neural information processing systems (NeurIPS), 32, 2019.

[231] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. In

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT), pages 4171–4186. As-

sociation for Computational Linguistics, 2019.

[232] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[233] Vitaly Zakharenko, Tor Aamodt, and Andreas Moshovos. Characterizing the per-

formance benefits of fused cpu/gpu systems using fusionsim. In Design, Automa-

tion & Test in Europe Conference (DATE), pages 685–688. IEEE, 2013.

[234] Richard L Graham, Galen M Shipman, Brian W Barrett, Ralph H Castain, George

Bosilca, and Andrew Lumsdaine. Open mpi: A high-performance, heterogeneous

mpi. In International Conference on Cluster Computing, pages 1–9. IEEE, 2006.

https://www.intel.com/software/sde
https://www.intel.com/software/sde
https://github.com/gromacs/gromacs
https://github.com/gromacs/gromacs

206 Conclusion and Future Work

[235] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. Starpu: a unified platform for task scheduling on heterogeneous multicore

architectures. In International Euro-Par Conference, pages 863–874. Springer,

2009.

[236] Aaftab Munshi. The OpenCL specification. In 2009 IEEE Hot Chips 21 Sympo-

sium (HCS), pages 1–314. IEEE, 2009.

[237] James C Beyer, Eric J Stotzer, Alistair Hart, and Bronis R de Supinski. Openmp

for accelerators. In OpenMP in the Petascale Era: 7th International Workshop on

OpenMP (IWOMP), pages 108–121. Springer, 2011.

[238] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with CUDA: Is CUDA the parallel programming model that appli-

cation developers have been waiting for? Queue, 6(2):40–53, 2008.

[239] AMD ROCm. Hip: C++ heterogeneous-compute interface for portability. https:

//github.com/ROCm/HIP, 2024.

[240] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive perfor-

mance comparison of CUDA and OpenCL. In International Conference on Paral-

lel Processing (ICPP), pages 216–225. IEEE, 2011.

[241] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and

Jack Dongarra. From cuda to opencl: Towards a performance-portable solution

for multi-platform gpu programming. Parallel Computing, 38(8):391–407, 2012.

[242] Junghyun Kim, Thanh Tuan Dao, Jaehoon Jung, Jinyoung Joo, and Jaejin Lee.

Bridging OpenCL and CUDA: a comparative analysis and translation. In Inter-

national Conference for High Performance Computing, Networking, Storage and

Analysis (SC), pages 1–12, 2015.

[243] Mayank Daga, Zachary S Tschirhart, and Chip Freitag. Exploring parallel pro-

gramming models for heterogeneous computing systems. In IEEE international

symposium on workload characterization, pages 98–107. IEEE, 2015.

https://github.com/ROCm/HIP
https://github.com/ROCm/HIP

BIBLIOGRAPHY 207

[244] Lee Howes and Maria Rovatsou. SYCL Specification – SYCL integrates OpenCL

devices with modern C++, 2015.

[245] Zhiming Wang, Yury Plyakhin, Chenwei Sun, Ziran Zhang, Zhiwei Jiang, Andy

Huang, and Hao Wang. A source-to-source CUDA to SYCL code migration tool:

Intel® DPC++ compatibility tool. In International Workshop on OpenCL, pages

1–2, 2022.

[246] Intel project for LLVM technology. https://github.com/intel/llvm.

[247] perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/, 2012.

[248] Andi Kleen and Beeman Strong. Intel processor trace on linux. Tracing Summit,

2015, 2015.

[249] Trevor E. Carlson, Wim Heirman, Harish Patil, and Lieven Eeckout. Efficient,

accurate and reproducible simulation of multi-threaded workloads. In Workshop

on Reproducible Research Methodologies (REPRODUCE), February 2014.

[250] Björn Gottschall, Silvio Campelo de Santana, and Magnus Jahre. Balancing accu-

racy and evaluation overhead in simulation point selection. In IEEE International

Symposium on Workload Characterization (IISWC), pages 43–53. IEEE, 2023.

[251] Brinkley Sprunt. The basics of performance-monitoring hardware. IEEE Micro,

22(4):64–71, 2002.

[252] The sniper multi-core simulator. https://snipersim.org.

[253] Vincent M. Weaver. Self-monitoring overhead of the linux perf_event performance

counter interface. In International Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 102–111, 2015.

https://github.com/intel/llvm
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://snipersim.org

	Acknowledgments
	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	The Context
	Challenges Involved
	Simulation of Multi-core Systems
	Simulation of Heterogeneous Systems
	Validation of Selected Sample
	Thesis structure

	Related Work
	Workloads and Analyses
	Characterizing Program Execution
	Sampling Single-threaded Workloads
	Sampling Multi-threaded Workloads
	Sampling GPU Workloads
	Analytical Modeling
	Warmup Techniques
	Simulation Infrastructures
	Synthetic Workload Generation
	Checkpointing Techniques

	LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications
	Introduction
	Fast and Generic Multi-threaded Simulation Requirements
	The LoopPoint Methodology
	Selecting a Unit of Work
	Understanding Parallelism
	Marking Region Boundaries
	Identifying Loops using DCFG
	Clustering Representative Regions
	Warmup
	Runtime Extrapolation
	Reproducible Application Execution for Accurate Analysis
	Putting it All Together
	Speed-up Potential
	Workload Applicability

	Experimental Setup
	Simulation Infrastructure
	Workloads
	Constrained Execution Infrastructure
	DCFG and Basic Blocks
	Unconstrained Replay
	Synchronization Handling

	Evaluation
	Accuracy
	Speedup

	Related Work
	Conclusion

	Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation
	Introduction
	Background and Motivation
	Program Sampling
	Checkpointing Techniques
	Microarchitectural State Warmup
	The Quest for Advanced and Efficient Sampling

	The Viper Methodology
	Exploring the Hierarchical Structure of Program Execution
	Region Profiling
	Determining the Region Similarity
	Fast and Accurate Fast-Forwarding
	The Warmup Challenge
	Generating Simulation Checkpoints
	Simulation of Representative Regions

	Experimental Setup
	Simulation Tools
	Benchmarks Used
	Analysis Tools

	Evaluation
	Comparison with State-of-the-Art
	Varying Region Sizes

	Conclusion

	Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling
	Introduction
	Simulating Modern Architectures
	The Pac-Sim Methodology
	Online Region Detection
	Online Region Profiling
	Determining Region Similarity
	Prediction Mechanism
	Simulation by Application Reconstruction
	Sampled Simulation in Parallel
	Microarchitectural Warmup

	Experimental Setup
	Simulation Tools
	Benchmarks Used

	Evaluation
	Comparison with the State-of-the-Art
	Case Studies

	Related Work
	Conclusion

	XPU-Point: Simulator-Agnostic Sample Selection Methodology for Heterogeneous CPU-GPU Applications
	Introduction
	XPU-Pin Framework
	Instrumentation and Analysis Tools

	The Imperative For Efficient Simulation of Heterogeneous Systems
	The Trend Towards Heterogeneity
	Limitations of Traditional Analysis Methodologies
	Effective Sampling of Heterogeneous Workloads
	Effects of Microarchitectural Warmup

	XPU-Point Sample Selection Methodology
	Workload Distribution on GPUs
	Slices of Heterogeneous Applications
	Capturing Heterogeneous Execution Profiles
	Selecting the Representative Slices
	Sample Validation and Tuning
	Estimating the Full Application Performance

	Experimental Setup
	Evaluation
	Comparison with GPU Sample Selection
	Sample Validation using Native Hardware
	Evaluation of PyTorch Inference Workloads

	Related Work
	Conclusion and Future Directions

	ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies
	Introduction
	Background
	Sample Selection Methodologies
	Sample Validation
	Hardware Performance Counters
	Instrumentation using Pin

	Methodology and Implementation Details
	ROI Selection using Sampling
	ROI Specification
	ROI Handling in ROIperf

	Experimental Setup
	Workloads Used
	Sample Selection
	Simulators Used

	Evaluation
	Testing ROIperf Applicability
	Evaluation of Single-threaded Applications
	Evaluation of Multi-threaded Applications

	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

