Accelerating the Evaluation of Large Workloads on
Post-Dennard Systems with Sampling

ALEN KANDATHUMTHODUKAYIL SABU

NATIONAL UNIVERSITY OF SINGAPORE

2024

TINUS

National University
of Singapore

Accelerating the Evaluation of Large Workloads on
Post-Dennard Systems with Sampling

ALEN KANDATHUMTHODUKAYIL SABU
(M.E., BITS-Pilani)

A THESIS SUBMITTED FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2024

Supervisor:
Assistant Professor Trevor Erik Carlson

Examiners:
Professor Li-Shiuan Peh
Associate Professor Weng-Fai Wong

Declaration

I hereby declare that this thesis is my original work and that I have written it in its entirety. I

have duly acknowledged all sources of information which have been used in the thesis.

This thesis has not been submitted for any degree in any university previously.

K

-

Alen Kandathumthodukayil Sabu

December 05, 2024

Dedicated to my family, who made me possible.

Lm silver and exact. I have no preconceptions.
Whatever I see I swallow immediately
Just as it is, unmisted by love or disliKe.
I am not cruel, only truthful
The eye of a little god, four-cornered.
Most of the time I meditate on the opposite wall.
It is pink, with speckles. I have looKed at it so long
I thinK it is part of my heart. But it flicKers.

Faces and darKness separate us over and over.

Sylvia Plath

Acknowledgments

I never imagined that the clunky, white machine with a black-and-white CRT monitor run-
ning Windows 95 that 1 first encountered in primary school would evolve into the powerful
computers we have today. In school, our access to computers was very limited. The Internet,
accessed through slow landline dial-up connections, often required tens of seconds to load a
single webpage. We could access broadband Internet at local computer cafes (an earlier form
of Internet-as-a-service?) offering slightly faster connections. Those were the days when floppy
disks and cassette tapes were being replaced by CDs. Computers evolved rapidly and became
increasingly affordable. As a millennial, I was fortunate enough to witness firsthand the tech-
nological shifts of that era. My growing interest in mathematics and programming during my
senior year of high school led me to pursue an undergraduate degree in computer science right

after the Great Recession.

I often wonder what might have been had I chosen a different path, perhaps in mathematics or
literature. Irregardless, pursuing computer science was indeed a great choice, and the journey
has been quite an adventure, especially over the past six years. From sleepless nights, rejections,
and handling depression to moments of accomplishment, I can’t say it hasn’t been a fun ride.
While pursuing knowledge and going through tough times, this phase of my life was also about

self-reflection and exploration.

Looking back on the times that inspired me to pursue academic research, I am grateful for
the influence of my family. My mom, dad, and sister have always been my biggest supporters.
Their trust and encouragement have been the bedrock upon which I have built my aspirations.
I am indebted to my grandfathers, whose passion for knowledge, scientific temper, and sense
of righteousness have had a significant impact on my life. My extended family was helpful
throughout, especially my amazing cousins. They always welcomed me with open arms and
open hearts during my travels. I can confidently attest that they are truly the best. I am
indebted to several inspiring teachers who have shaped my academic journey. In particular, my
senior high school physics teacher, Jerin Jose, introduced me to research thinking, and later,
Biju Raveendran motivated me to pursue systems research for my master’s thesis. I am grateful
to the many inspiring individuals I interacted with at BITS Pilani (Goa), especially Sreejith
Vidhyadharan, Bharat Deshpande, and Anguraj Baskar, among others. My stint at NetApp

exposed me to the field of systems performance modeling and measurement. The freedom to

explore recent publications and work on improving performance models was a unique experience

that ignited my passion for research in the area.

I want to express my heartfelt gratitude to my advisor, Trevor E. Carlson, for his guidance, sup-
port, and encouragement throughout my PhD. His mentorship was instrumental in shaping me
into the researcher I am today. Despite our occasional disagreements, he was consistently patient
and understanding right from our first meeting in Bengaluru. He was particularly supportive
during tough times, such as the COVID-19 pandemic, when it was hard to be productive. His
emphasis on research ethics (particularly when conducting experiments) and kindness toward
fellow researchers (since we often received harsh comments instead of constructive criticism
from conference reviewers) have significantly influenced my approach to academic research. As
a well-recognized figure in computer architecture conferences, Trevor often introduced me to
other researchers as an expert in sampling and simulation methodologies, which significantly

benefited me during my job search.

I was fortunate to have Harish Patil and Wim Heirman as my collaborators throughout my PhD.
Their insights and expertise were invaluable to my research. Given the extensive interaction we
have had, Harish was a co-advisor during my PhD. He constantly encouraged me and helped me
throughout. I also had the privilege of working under his mentorship during my internship at
Intel. At a time when few companies were hiring, Harish went the extra mile to secure me this
opportunity. The six months I spent working with him were both enjoyable and intellectually

stimulating.

I am grateful for the thought-provoking and inspiring conversations with numerous computer
architecture researchers and practitioners. I would like to acknowledge the helpful interactions
with Lizy John, Lieven Eeckhout, Jason Lowe-Power, Magnus Sjalander, Timothy Pinkston,
Yifan Sun, and Matt Sinclair, which helped refine my research direction and ensure its relevance.
Although limited, I benefited from insightful conversations with industry experts like Gilles
Pokam, Gabriel Loh, Alexander Isaev, Karthik Sankaranarayanan, Sudhavana Gurumurthi,
Jason Clemens, and Joseph Greathouse. Their perspectives were instrumental in broadening
my research in this field. I would like to extend my gratitude to my thesis examiners, Li-Shiuan
Peh and Weng-Fai Wong, and the department representative, Ambuj Varshney, for their kind

and constructive feedback. Their careful reviews significantly improved the quality of my thesis.

I am thankful to the entire CompArch group (Trevor’s research group at NUS) for fostering a
supportive and collaborative environment. Even though many of us have not worked together
directly, the camaraderie and enthusiasm within the group have been a constant source of
inspiration. I would also like to thank Stephanie Hepner for her assistance in proofreading my
papers. The CompArch group was relatively small when I joined in 2018. Jinho Lee was the
sole PhD student in the group at the time. We experienced the highs and lows of academic life
together, offering mutual support as we navigated the challenges. Neethu Mallya helped me get
started in the Singaporean academic environment. She was helpful in several aspects, including
discussions about potential research directions. Andreas Diavastos was always available for
both research and personal conversations, providing invaluable support. His comments on my

papers were of great help. The group began to grow with individuals from diverse backgrounds.

xi

Soon, Ali Hajiabadi, Burin Amornpaissanon, and Newton Singh joined, followed by Ahmed
Shalabi and Razvan Nitu. We shared many memorable experiences, including Friday evening
basketball games and group outings. Coffee chats with Ali and Andreas were the perfect respite
after a day of computer architecture. However, the COVID-19 pandemic disrupted these social
gatherings. Post-pandemic, we resumed group activities like hiking, biking, and kayaking along
with new members, such as Arash Pashrashid, Yun Chen, Yaswanth Tavva, Lingfeng Pei, Miao
Yu, Tingting Xiang, Wei Siew Liew, Changxi Liu, and Yihao Fu. The camaraderie within
the group fostered stimulating conversations and cultural exchanges. I had the pleasure of
collaborating with Changxi Liu on several projects. Our brainstorming sessions over Indian
food were always productive. I also collaborated with Qingxuan (Ray) Kang and Akanksha
Chaudhari on a project. In the latter part of my PhD, I had the opportunity to work with
Jikun Zhang on some interesting projects. These experiences, enriched by friendships and
intellectual collaboration, have left me with core memories and a profound appreciation for the

people who shaped my journey.

I would also like to thank several individuals outside of our research group who made my six
years at NUS memorable. Nitya Lakshmanan has been my go-to friend at NUS, and interactions
with her often helped me navigate the challenges of grad school while keeping my sanity intact.
Soundarya Ramesh was incredibly patient and kind during our deep conversations over shared
meals. The workplace was a fun environment, thanks to Ayush Mishra, Raj Joshi, Mohit Upad-
hyay, and Rohan Juneja. Singapore’s warm weather ushered lasting friendships with Ashwin
Ram, Varsha Suresh, Georgina Roca, Ashwin Kumar, Febin Issac, and Ashok Narendranath.
Towards the final stages of my PhD, I met some awesome undergrads like Inaz Begum, Joann
Stanley, and Bebin Joseph, who introduced me to more interesting people. The list would
be incomplete without mentioning Aung Nyein Kyaw (aka “bro”) for graciously brewing both
hot and cold beverages for us over the years. Among those I met at conferences who greatly
appreciated various aspects of my research include Charles Hong, Zhantong Qiu, Nandeeka
Nayak, and Hyokeun Lee. Zhantong collaborated with me on a project, and her excitement
about building simulators is a perpetual mystery to me. I would like to express my heartfelt
appreciation to my long-time friends, who have been a constant source of encouragement. In
particular, I would like to thank Ijaz Muhamed, Michelle Varghese, Krishnanand SJ, Rahul
Udayakumar, Tobin Mathew, Gokul Rajan, Vipin TM, Majo Oommen, Baptist Joseph, Indra-
jeet Khandekar, Prashant Singh, Anjali Ajayan, and Anand Sasidharan. Their presence in my
life has made this journey memorable and enjoyable. I would also like to express my sincerest
gratitude and appreciation to the staff at SoC, UHC, UCS, and the cafeterias for their valuable
service throughout my PhD. Finally, I would like to acknowledge the generous grants from Intel
Corporation and the travel support provided by IEEE TCCA and ACM SIGARCH during my

doctoral research.

Contents

Acknowledgments ix
Abstract xvii
List of Publications xix
List of Figures xxi
List of Tables xxix
1 Introduction 1
1.1 The Context o e 1
1.2 Challenges Involved 2
1.3 Simulation of Multi-core Systems oL 6
1.4 Simulation of Heterogeneous Systems 8
1.5 Validation of Selected Sample 9
1.6 Thesis structure. 11
2 Related Work 13
2.1 Workloads and Analyses 13
2.2 Characterizing Program Execution 14
2.3 Sampling Single-threaded Workloads 15
2.4 Sampling Multi-threaded Workloads 16
2.5 Sampling GPU Workloads 17
2.6 Analytical Modeling 18
2.7 Warmup Techniques e 18
2.8 Simulation Infrastructures L oo 19
2.9 Synthetic Workload Generation 20
2.10 Checkpointing Techniques o 21

3 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Ap-
plications 23
3.1 Introduction L 23

3.2
3.3

3.4

3.5

3.6
3.7

xiv CONTENTS

Fast and Generic Multi-threaded Simulation Requirements. 27
The LoopPoint Methodology, 31
3.3.1 Selecting a Unitof Work oo 32
3.3.2 Understanding Parallelism00 . 32
3.3.3 Marking Region Boundaries oo 34
3.3.4 Identifying Loops using DCFG 35
3.3.5 Clustering Representative Regions 37
3.3.6 Warmup e e e 38
3.3.7 Runtime Extrapolation 38
3.3.8 Reproducible Application Execution for Accurate Analysis. 39
3.3.9 Putting it All Together 39
3.3.10 Speed-up Potentialo 40
3.3.11 Workload Applicability 40
Experimental Setup oo 41
3.4.1 Simulation Infrastructure L. 41
3.4.2 Workloads 42
3.4.3 Constrained Execution Infrastructure 44
3.4.4 DCFG and Basic Blocks 45
3.4.5 Unconstrained Replayo L. 45
3.4.6 Synchronization Handling 46
Evaluation e 47
3.5.1 Accuracy 47
3.5.2 Speedup 51
Related Work 0 Lo 54
Conclusion e 56

Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core

Simulation 57
4.1 Introduction L 57
4.2 Background and Motivation L 60
4.2.1 Program Samplingo 60
4.2.2 Checkpointing Techniques 61
4.2.3 Microarchitectural State Warmup 62
4.2.4 The Quest for Advanced and Efficient Sampling 63
4.3 The Viper Methodology 63
4.3.1 Exploring the Hierarchical Structure of Program Execution 64
4.3.2 Region Profiling 67
4.3.3 Determining the Region Similarity 68
4.3.4 Fast and Accurate Fast-Forwarding 68
4.3.5 The Warmup Challenge 69
4.3.6 Generating Simulation Checkpoints 69
4.3.7 Simulation of Representative Regions 70
4.4 Experimental Setup Lo 71

CONTENTS XV

4.4.1 Simulation Tools 71
4.4.2 Benchmarks Used 71
4.4.3 Analysis Tools 72
4.5 Evaluation e 73
4.5.1 Comparison with State-of-the-Art 73
4.5.2 Varying Region Sizes 75
4.6 Conclusion 7

5 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live

Sampling 79
5.1 Introduction e e e 79
5.2 Simulating Modern Architectures 83
5.3 The Pac-Sim Methodology 88
5.3.1 Online Region Detection 89
5.3.2 Online Region Profiling 92
5.3.3 Determining Region Similarity 94
5.3.4 Prediction Mechanism, 95
5.3.5 Simulation by Application Reconstruction 97
5.3.6 Sampled Simulation in Parallel 98
5.3.7 Microarchitectural Warmup Lo oL 99
5.4 Experimental Setup 100
5.4.1 Simulation Tools 101
5.4.2 Benchmarks Used, 102
5.5 Evaluation L L 103
5.5.1 Comparison with the State-of-the-Art 106
5.5.2 Case Studies 110
5.6 Related Work e 116
5.7 Conclusion e 116

6 XPU-Point: Simulator-Agnostic Sample Selection Methodology for Hetero-

geneous CPU-GPU Applications 117
6.1 Introduction e 117
6.2 XPU-Pin Framework 123
6.2.1 Instrumentation and Analysis Tools 123
6.3 The Imperative For Efficient Simulation of Heterogeneous Systems 126
6.3.1 The Trend Towards Heterogeneity 126
6.3.2 Limitations of Traditional Analysis Methodologies 127
6.3.3 Effective Sampling of Heterogeneous Workloads 127
6.3.4 Effects of Microarchitectural Warmup 128
6.4 XPU-Point Sample Selection Methodology, 129
6.4.1 Workload Distribution on GPUs 130
6.4.2 Slices of Heterogeneous Applications 131

6.4.3 Capturing Heterogeneous Execution Profiles 132

xvi CONTENTS

6.4.4 Selecting the Representative Slices 133
6.4.5 Sample Validation and Tuning 134
6.4.6 Estimating the Full Application Performance 135
6.5 Experimental Setup 136
6.6 Evaluation 137
6.6.1 Comparison with GPU Sample Selection 139
6.6.2 Sample Validation using Native Hardware 141
6.6.3 Evaluation of PyTorch Inference Workloads 145
6.7 Related Work L 147
6.8 Conclusion and Future Directions 148

7 ROlIperf: Rapid Validation and Iterative Tuning of Workload Sampling Method-

ologies 151
7.1 Introduction 151
7.2 Background 156
7.2.1 Sample Selection Methodologies 156
7.2.2 Sample Validation 157

7.2.3 Hardware Performance Counters 157
7.2.4 Instrumentation using Pin 158

7.3 Methodology and Implementation Details 158
7.3.1 ROI Selection using Sampling L. 158
7.3.2 ROI Specification 159
7.3.3 ROI Handling in ROIperf 160

7.4 Experimental Setup 163
7.4.1 Workloads Used e 163
7.4.2 Sample Selection 163
7.4.3 Simulators Used 164

7.5 Evaluation 164
7.5.1 Testing ROIperf Applicability 164
7.5.2 Evaluation of Single-threaded Applications 165
7.5.3 Evaluation of Multi-threaded Applications 168

7.6 Related Work L 169
7.7 Conclusion e e 170
8 Conclusion and Future Work 171
8.1 Conclusion e 171
8.2 Future Work L 172

Bibliography 177

Abstract

As the traditional Moore’s Law-driven performance gains have plateaued with the end
of Dennard scaling, computer architects adopted novel design strategies to further improve
performance. This marked a radical shift in the design of next-generation computing sys-
tems, including multi-core processors, accelerators, and heterogeneous systems. Evaluating
the performance of complex, realistic workloads running on these systems poses unique
challenges, particularly due to the long simulation times. Sampling serves as a promising
solution by intelligently selecting the representative subsets of a workload for performance
evaluation. In this thesis, we explore novel methodologies to evaluate the performance of
post-Dennard systems in a fast and efficient way using sampling.

To address these challenges, we first propose LoopPoint — a sampled simulation method-
ology that applies to general-purpose multi-threaded workloads. LoopPoint uses application
loops to demarcate regions that represent the amount of work done. We demonstrate that
LoopPoint reduces the simulation time of large multi-threaded workloads from a few years
to a few hours. In a follow-up work, Viper, we make use of the hierarchical structure of
program execution to select regions of finer granularity suitable for RTL-level simulations.
We show that naive adaptations of SimPoint or LoopPoint may not result in an optimal
sample, as the application periodicity and phases vary among workloads.

Modern architectures often incorporate complex dynamic optimization techniques to
improve system performance gains at runtime. However, prior sampled simulation method-
ologies are incapable of handling the dynamic nature of software and hardware. On this
front, we propose Pac-Sim, which can be used to evaluate dynamically optimized software
and hardware. Pac-Sim performs online analysis and relies on a real-time predictor to deter-
mine detailed simulation regions. This allows Pac-Sim to accurately evaluate dynamically
scheduled applications, accounting for any runtime performance variability.

The increasing computational demand posed by high-performance computing and arti-
ficial intelligence workloads is driving the shift toward heterogeneous architectures. Simula-
tion of future heterogeneous systems is essential in understanding the interactions between
compute components, but full-program simulations are prohibitively time-consuming and
resource-intensive. We propose XPU-Point to select representative regions of heterogeneous
CPU-GPU workloads to enable fast, accurate sampled simulations. XPU-Point significantly
speeds up the simulation of HPC and AI workloads without compromising accuracy.

To summarize, we show that simulation solutions alone are insufficient because of the
significant slowdown observed, and sampling works as an efficient technique to render the
simulation of large workloads tractable. We evaluate a variety of multi-core and heteroge-
neous workloads to develop methodologies that accelerate the performance evaluation and

design space exploration of novel architectures.

List of Publications

1. Alen Sabu, Harish Patil, Wim Heirman, Trevor E. Carlson, “LoopPoint: Checkpoint-
driven Sampled Simulation for Multi-threaded Applications,” in IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), 2022.

2. Alen Sabuf, Changxi Liuf, Trevor E. Carlson, “Viper: Utilizing Hierarchical Program
Structure to Accelerate Multi-core Stmulation,” in IEEE Access, 2024.

3. Changxi Liuf, Alen Sabuf, Akanksha Chaudhari, Qingxuan Kang, Trevor E. Carlson,
“Pac-Stm: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling,” in
ACM Transactions on Architecture and Code Optimization (TACO), 2024.

4. Alen Sabu, Harish Patil, Wim Heirman, Changxi Liu, Trevor E. Carlson, “XPU-Point:
Stmulator-Agnostic Sample Selection Methodology for Heterogeneous CPU-GPU Applica-

tions,” in International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2025.

Works in Progress

1. Alen Sabu, Zhantong Qiu, Harish Patil, Changxi Liu, Wim Heirman, Jason Lowe-Power,
Trevor E. Carlson, “Accelerated Simulation of Parallel Workloads using Loop-Bounded
Checkpoints.”

Other Relevant Publications

1. Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, Trevor E. Carl-
son, “ELFies: Erecutable Region Checkpoints for Performance Analysis and Simulation,”

in International Symposium on Code Generation and Optimization (CGO), 2021.

Non-Refereed / Non-Proceedings

1. Alen Sabu, Harish Patil, Wim Heirman, Trevor E. Carlson, “ ROlIperf: Rapid Validation
and Iterative Tuning of Workload Sampling Methodologies” in Workshop on Computer
Architecture Modeling and Simulation (CAMS), 2023.

2. Alen Sabu, Harish Patil, Wim Heirman, Alexander Isaev, Trevor E. Carlson, “Ap-
proaching a High-Performance, General-Purpose Multi-Threaded Sampling Methodology.”
in Young Architect Workshop (YArch), 2020.

t Joint first authors

List of Figures

1.1

1.2

3.1

3.2

3.3

The normalized single-core performance scores of (a) integer and (b) floating-
point SPEC CPU benchmarks on various processors over the last 30 years. Per-
formance is measured using scores derived for each processor from the following
SPEC CPU benchmarks: SPECint1995, SPEC{p1995, SPECint2000, SPEC{p2000,
SPECint2006, SPEC{p2006, SPECint2017, and SPECfp2017. The data is col-
lected from spec.org [1]. L
The estimated wall-clock times (in seconds) for the full simulation of multi-
threaded (eight OpenMP threads) SPEC CPU2017 benchmarks and SPEChpc
2021 Tiny benchmarks (rank=1) using Reference inputs. The benchmarks were
compiled with the Intel oneAPI toolchain. We assume the simulation speed of
gem5 (CPU portion) and AccelSim (GPU portion) to estimate the wall times

based on the instruction counts of the benchmarks.

Approximate time to evaluate the performance of multi-threaded benchmarks
with different methodologies. The average result and error bars represent the es-
timated simulation time for all benchmarks in the corresponding suite and input
sets, assuming infinite simulation resources (the longest simulation region deter-
mines the overall simulation time). Benchmarks were configured with 8-threads
and passive OpenMP wait policy, assuming a total simulation speed of 100 KIPS.
LoopPoint-based region selection and simulation for multi-threaded workloads.
The workload is captured for analysis and region selection based on loop in-
formation. The representative regions are simulated using a checkpoint-driven
method as well as by binary-driven unconstrained way allowing for extrapolation
of performance and other metrics of interest.
The above graphs show the variation in the share of the per-thread instruction
count on a per-slice (with a slice size of 800M global instructions) basis as the
application progresses. If we consider a multi-threaded region, the basic-block
share is different for all threads. This is subtly captured by concatenating the

per-thread execution fingerprints.

24

xxii LIST OF FIGURES

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

An example of a representative region identified by LoopPoint. (3.4a) The num-
bers represent iterations of the corresponding loops that form the 8-threaded
region. The start point and end point of the chosen region are at line 3022, the
entry point of loop . (3.4b) The top graph shows the variation of IPC over time
for the full application run, while the bottom graph shows that of the chosen
region. The (PC, count) boundaries are marked inside the IPC graph of the region. 36
The runtime prediction errors of SPEC CPU2017 applications (train inputs) using
active and passive wait policies that use eight threads for unconstrained simula-
tion. The y-axis represents the percent error in predicting the runtime of each of
the applications along the x-axis. 49
The runtime prediction results of the NPB benchmarks that use 8 and 16 threads.
The applications use a passive wait policy and class C inputs. The y-axis repre-
sents the error percentage in predicting the runtime of each of the applications
on the x-axis. e 50
The prediction errors of various metrics for SPEC CPU2017 benchmarks using
LoopPoint. The benchmarks use active and passive wait policies with train inputs
and eight threads and are simulated in realistic unconstrained mode. 51
A comparison of theoretical and actual speedups achieved by LoopPoint. The

workload used is SPEC CPU2017 applications (active wait policy) using train

INPULS. . . . o e 52
LoopPoint and BarrierPoint theoretical speedup for SPEC CPU2017 applications
(passive wait policy) using ref inputs. o000 52
A comparison of actual speedups achieved by LoopPoint when the applications

use 8 and 16 cores. Speedups are listed for the NPB suite using the C input set

and a passive wait policy. 54

The workflow of Viper showing region identification, clustering, and simulation.
The hierarchical structure of an application is used to identify regions. Sampled
simulation is performed based on the clustering information of the regions. The
simulation can be performed on various kinds of simulators depending on the
level of detail required. 64
The selection of region boundaries (or markers) in an application using Viper.
Marker M; signifies the beginning of the current region with expected region
lengths to be between d,,, and dy,q, instructions. M,y is finally identified in
accordance with case (a) or (b) (described in section 4.3.1), which marks the end
of the current region. 66
The percentage distribution of the type of markers (barriers, task loops, and
inner loops) identified in the 8-threaded SPEC CPU2017 benchmarks using train
inputs. Potential Markers denote all the available markers in the application,

while Selected Markers signify the markers that serve as the boundaries of regions. 67

LIST OF FIGURES xxiii

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

Plot (a) shows the aggregate IPC of the full run, and plot (b) shows the recon-

structed IPC of the 644 .nab_s.1 benchmark using Viper. This example shows

the benchmark running with test inputs using 8 threads. The shaded regions in

the plot (b) represent the regions simulated in detail.
A comparison of the estimated wall time to simulate SPEC CPU2017 benchmarks

using train inputs and 8 threads for the full simulation (Full RTL) and Viper. We

use the simulation rate of XiangShan on Verilator and assume parallel simulation

of all the representative simulation checkpoints.
A comparison of the absolute runtime prediction error for Viper and LoopPoint.

We use SPEC CPU2017 benchmarks that use train inputs and 8 threads.

A speedup comparison of LoopPoint and Viper for the 8-threaded SPEC CPU2017

benchmarks using train inputs.
Runtime prediction error for 8-threaded SPEC CPU2017 benchmarks using train

inputs for different region sizes. o
The speedup achieved for 8-threaded SPEC CPU2017 benchmarks using train

inputs. Viper is used to identify regions of fixed sizes.

Performance comparison of Pac-Sim with SMARTS [2] in different settings for
the SPEC benchmark 644 .nab_s.1 (multi-threaded version uses 8 threads). The
left graph shows the comparison of runtime prediction errors using different sam-
pled simulation techniques, whereas the right graph shows the overall simulation
time (running on a parallel simulator). Both figures use lower-is-better metrics.
SMARTS-A-B repeatedly switches between a single detailed simulation region of
length A and B fast-forward regions of length A.
The figure shows the resource utilization of a recent multi-threaded sampled
simulation technique, LoopPoint, for the SPEC CPU2017 benchmarks with the
ref inputs running eight OpenMP threads. The graph on the left shows the time
required to generate the profiling data (with checkpoints stored as pinballs [3]),
whereas the graph on the right shows the amount of storage required.
The overall workflow of Pac-Sim methodology. At any given time, the regions
of a multi-threaded workload till R; are identified (as shown above). First, Pac-
Sim monitors the application code structure to determine an appropriate region
marker M; 1, which marks both the end of the region R; and the start of the
region R;41. Next, the feature vector and simulation results for R; are collected,
and a prediction mechanism determines the simulation mode for region R; ;.
Finally, region R;1; will be simulated, either in detail or in fast-forward mode.
The figure shows the workflow of online BBV generation. Whenever a basic block
BB; is encountered, a corresponding execution fingerprint BBV, is generated
using hash functions applied to the program counter of BB; and the number of
instructions it contains. hashq to hashg are d distinct hash functions, where d is
the dimension of the BBV. The BBV for each region is obtained by accumulating
all BBV;s that belong to the region.

90

xxiv LIST OF FIGURES

5.5 The predictor utilizes the trie [4] data structure to quickly predict the cluster ID
of the next region by searching for a similar history with the same region start
marker M;. In this example, the cluster ID of the next region is predicted to be
2 since the prior region with the cluster ID of 2 has the same start marker M>
and the longest matching sequence (3 — 3 — 2). Plot (b) shows the accuracy of
the predictor for different benchmark suites.

5.6 The graph shows the regions identified using Pac-Sim for the NPB benchmark
ft, grouped together with the respective cluster they belong to. The shaded
portion represents the regions that are simulated in detail.

5.7 The workflow of Pac-Sim when the representative regions are simulated in paral-
lel. Pac-Sim starts in the emulation mode, collecting feature vectors and MTR [5]
warmup data online, and then predicts the simulation mode of the next region.
For regions predicted for detailed mode, Pac-Sim forks new processes to perform
warmup and detailed simulation.

5.8 A comparison of the absolute runtime prediction error using different method-
ologies, namely, Time-Based Sampling, LoopPoint, and Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. On average, Pac-Sim achieves
better accuracy compared to Time-Based Sampling and LoopPoint.

5.9 The parallel and serial speedups achieved using Pac-Sim for 8-threaded SPEC
CPU2017 benchmarks using train inputs. For speedup calculations, the simula-
tion walltime corresponding to Pac-Sim includes both online analysis and simu-
lation time, whereas, for LoopPoint, we consider only the checkpoint simulation
time, excluding the time required for offline profiling and checkpoint genera-
tion. Pac-Sim outperforms both Time-Based Sampling and LoopPoint in terms
of speedup achieved. Note that Time-Based Sampling techniques are not suitable
for sampled simulation in parallel.

5.10 The absolute differences in predicting L2 cache misses per kilo instructions (MPKI)
using Pac-Sim as compared to the full detailed simulation. In this experiment,
we use the NPB benchmarks with class A inputs running eight threads. The
geometric mean of the absolute differences in predicting L2 MPKI is 0.23.

5.11 The accuracy and serial speedup achieved for Pac-Sim methodology when simu-
lated using three different microarchitectures, namely, Gainestown, Skylake, and
Sunnycove, for NPB benchmarks with class A inputs running eight threads and
one thread.

5.12 A comparison of the estimated walltime for fully detailed simulation and sampled
simulation using the serial and parallel versions of Pac-Sim for 8-threaded SPEC
CPU2017 benchmarks using ref inputs. The estimated walltime includes the time
required for online analysis, warmup, and simulation.

5.13 The graph shows the percentage of time that Pac-Sim spends at each phase during
the sampled simulation of each benchmark suite (average across all benchmarks).
The Analysis component includes online marker detection, region profiling, clus-

tering, and prediction.o Lo

104

LIST OF FIGURES XXV

5.14

5.15

5.16

6.1

6.2

6.3

6.4

6.5

6.6

Figure shows the average error rates (from five different runs) and error bars
in predicting the runtime of dynamically scheduled benchmarks. We use PAR-
SEC benchmarks with the simlarge input using OmpSs and OpenMP, and NPB
benchmarks with class A inputs using OpenMP runtime. 112
The aggregate giga (billion) instructions per second (GIPS) of the full run (a),
reconstructed GIPS using Pac-Sim (b), and the varying CPU frequency for all
CPUs (c) 644.nab_s.1 benchmark with train inputs running 8 threads. The
shaded regions in (b) represent the regions simulated in detail. The figures share
the same x-axis. 114
The figure shows the absolute difference in performance (in terms of runtime)
for NPB benchmarks using class A inputs and 8 threads with (w/) and without
(w/o) SSE2 simulated in detailed mode and with Pac-Sim. 114

A high-level schematic of XPU-Pin. The x86 CPU instrumentation tool Pin
interacts with GPU instrumentation tools (like GTPin and NVBit) for event-
based callbacks. Integration with similar tools for other hardware components
(x=TPUs, NPUs, accelerators, etc.) is feasible. The simulation phase (not
shown), which is performed using a variety of tools, is handled separately. 118
The wall time (in seconds) for evaluating realistic heterogeneous CPU-GPU work-
loads such as SPEChpc 2021 benchmarks (tiny set) using ref inputs and PyTorch
Inference runs. Benchmarks were evaluated in (a) native run, (b) profiling us-
ing XPU-Point, (c) parallel simulation of the representative regions identified
using XPU-Point (mean wall time with error bars indicating the shortest- and
longest-running regions), and (d) full-detailed simulation. The experiments are
conducted on machines that use Intel Sapphire Rapids CPU and Intel Ponte Vec-
chio GPU. The simulation wall times are estimated using the simulation rate of
gemb [6] and Accel-Sim [7]. im=Imperative, ts=TorchScript. 119
The end-to-end workflow of the XPU-Point methodology to sample heterogeneous
workloads. XPU-Point uses XPU-Profiler to capture execution profiles of a het-
erogeneous workload. Once the representative regions (samples) are identified
for the workload, their performance, as estimated by XPU-Timer (or a hetero-

geneous simulator), is extrapolated and compared with that of the full workload

to validate the sample. L 122
The control flow of XPU-Pin co-analysis tool for an x86 CPU and Intel GPU or
NVIDIA GPU. e 126

The workflow of XPU-Point methodology to capture representative regions (or
ROIs) along with their corresponding weights suitable for the sampled simulation
of heterogeneous workloads. 129
A comparison of the hierarchical structures used in CUDA and SYCL program-
ming models to distribute kernel execution tasks, showing the level of granularity
at which work is assigned to the execution units. CUDA primarily utilizes the
SIMT execution model, while in SYCL, underlying architecture and implemen-

tations determine the execution model. 130

XxXVi LIST OF FIGURES

6.7 The representation of a slice (or region) in XPU-Point. A slice is defined as
the execution window between consecutive kernel calls within a heterogeneous
application. e

6.8 The concatenation of CPU and GPU BBVs into a longer, combined XPU-BBV
that represents a heterogeneous region in XPU-Point methodology.

6.9 The instruction split between CPU and GPU for loop executions in SPECaccel
2023 benchmarks using train inputs. L L.

6.10 The number of loops executed on CPU and GPU in SPECaccel 2023 benchmarks
using train inputs. L L L L

6.11 The sampling errors for the SPECaccel 2023 benchmarks with GPU-only profiles
(GPU-Point) vs. CPU-GPU profiles (XPU-Point).

6.12 The sampling errors plotted for the SPEChpc 2021 benchmarks with test
inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled
and validated on an NVIDIA A100 machine.

6.13 The simulation speedup plotted for the SPEChpc 2021 benchmarks with test
inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled
and validated on an NVIDIA A100 machine.

6.14 The sampling errors obtained for the representative regions identified for SPEChpc
2021 benchmarks that use ref inputs from the tiny set. The representative re-
gions of the benchmarks are generated and validated on an Intel PVC machine. .

6.15 The speedup obtained for the representative regions identified for SPEChpc
2021 benchmarks that use ref inputs from the tiny set.

6.16 Sampling errors for AutoDock (work-item=8) using different inputs on Intel
and NVIDIA GPU platforms.

6.17 The speedup obtained for AutoDock (work-item=8) using different inputs on
Intel and NVIDIA GPU platforms.

6.18 The sampling errors for GROMACS in different settings on Intel Iris and
NVIDIA A100 using XPU-Point.

6.19 The speedup obtained for GROMACS in different settings on Intel Iris and
NVIDIA A100 using XPU-Point.

6.20 The sampling errors obtained for PyTorch Inference runs using XPU-Point
on Intel PVC. im=Imperative, ts=TorchScript.

6.21 The speedups obtained during the simulation of PyTorch Inference runs. The
line graph (plotted with the secondary y-axis) shows the number of representative

regions selected using XPU-Point. im=Imperative, ts=TorchScript.

132

143

143

LIST OF FIGURES xxvii

6.22 The slowdowns (normalized with the native runtime of the application) for Py-

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Torch Inference runs on Intel Ponte Vecchio GPU. The slowdown in Pin-Bare
mode measures the slowdown due to running the benchmarks under Pin with
no instrumentation. To evaluate the slowdown caused by the GTPin Tool, we
use a basic instrumentation tool, Nothing. XPU-Timer uses XPU-Pin to col-
lect the timing information of the benchmarks. The GPU-Profiler profiles the
benchmarks using GTPin to collect BBVs. XPU-Profiler uses XPU-Pin to collect
BBVs of the CPU-GPU execution concurrently.

A comparison of the total wall-time required to validate the representative regions
identified for the multi-threaded SPEC CPU2017 benchmarks using train inputs
(the gap is expected to increase for ref inputs). The bars show a comparison of
the minimum wall time taken to validate the regions (selected using LoopPoint [8]
methodology) on a cycle-level simulator and the ROIperf framework.
An overview of the working of ROIperf framework to validate the regions of
interest (ROIs). The performance of the full workload and the ROIs are measured
on the native hardware. The extrapolated performance is compared with the
performance of the full runs to quantify the sampling error.
The high-level execution flow of an application using the ROIperf tool. Upon
program start, user-defined performance counters are initialized. Measurements
are then activated at the start of ROI and remain active until the end of ROL.

Hardware instruction counts or address (PC) counts are employed to identify the

Sampling error in predicting cycles-per-instructions (CPI) for single-threaded
workloads from the SPEC CPU2017 suite using train inputs. The errors were
measured using both a cycle-level simulator and the ROIperf tool running on
Broadwell and Skylake hardware platforms.
Sampling error in predicting the RDTSC values of the single-threaded SPEC
benchmarks using ref input. Lo oo
A comparison of RDTSC estimation error using ROIperf and runtime estimation
error using CoreSim simulator. The benchmark suite is SPEC CPU2017, and the
benchmarks use 8 threads, train inputs, and active wait policy. The ROIs are
identified using LoopPoint methodology.
A comparison of simulation-based prediction errors with ROIperf results for both
HW__CPU__CYCLES and RDTSC projections on a Skylake Server. We use NPB

benchmarks that use Class C inputs, 8 threads and passive wait policy..

List of Tables

1.1 Table summarizes the methodologies proposed in this thesis. We categorize the
methodologies into two main groups: Sample Selection and Validation. The
table also identifies the Analysis Type used by each methodology. Notably,
some methodologies require an upfront analysis or profiling phase to extract
application-specific characteristics. Additionally, the table indicates the primary

applicability of the methodology.

3.1 The primary characteristics of the simulated system.
3.2 SPEC CPU2017 speed application attributes. F=Fortran, KLOC=thousand lines
of code. From [1]

42

42

3.3 SPEC CPU2017 speed synchronization primitives used. stad=static for, dynd=dynamic

for, bar=barrier, ma=master, si=single, red=reduction, at=atomic, lck=lock. . .
4.1 The configuration of Gainestown microarchitecture.

5.1 This table summarizes previously proposed sampled simulation methodologies
for both single-threaded and multi-threaded applications. We categorize these
methodologies into two main groups: Profile-driven and Statistical. The ta-
ble also identifies the Analysis Type used by each methodology. Notably, some
methodologies require an upfront analysis or profiling phase to extract application-
specific characteristics. Additionally, the table indicates which methodologies are
amenable to parallel simulation, which determines the maximum speedup of the
methodology. The field Warmup shows the warmup technique used to recon-
struct the microarchitectural state at the beginning of the detailed simulation.

5.2 The default parameters of Pac-Sim used in our experiments.

5.3 The configuration parameters we used for Gainestown, Skylake, and Sunnycove
microarchitectures on Sniper. L L

5.4 Table shows the IPC of freqmine benchmark from the PARSEC benchmark suite
using the simlarge input for threads 0 through 7. Pac-Sim shows the details of

dynamically scheduled software whose IPC and thread mapping differ across two

43

6.1

6.2

The combinations of CPUs and GPUs for Intel- and NVIDIA-based systems used
to evaluate XPU-Point methodology. 136
The classification of GROMACS based on the offloading device for the execu-
tion of each calculation. We also use -nsteps 200 with —notunepme for all types.

The last column shows the number of slices for each type. 144

Chapter

Introduction

2 _DHG USHICLTIEH FTHHTH 2 pmid aldligl CUTeILD mmuu.l

— e 339

1.1 The Context

Central processing units (CPUs or processors) have long been the cornerstone of com-
puting, responsible for executing instructions and managing system resources. To en-
sure efficient resource allocation and meet the ever-growing computational demands,
accurately estimating the performance of processors is essential. Computer architects
typically rely on microarchitectural simulations to assess system performance metrics
and compare design choices. The processor designs undergo a comprehensive evaluation
of power consumption, performance capabilities, area requirements, and their trade-offs

prior to fabrication.

With the end of Moore’s law [9], computer architects have turned to alternative ap-
proaches to enhance computational capabilities. One prominent strategy involves a

shift towards increasing the core count [10, 11] and embracing heterogeneity in archi-

Y(transl.) Death is sinking into slumbers deep; Birth again is waking out of sleep. — Kural: 339

2 Introduction

tectures [12], complemented by the introduction of several software- and system-level
optimizations aimed at improving performance and power efficiencies [13]. As proces-
sors/systems continue to evolve in complexity and power, accurately assessing their
performance characteristics becomes increasingly intricate. Understanding the workload
for the analysis and performance prediction of future systems is an extremely difficult
task. Workloads may have extremely long run times and are fairly sophisticated with

OS, library, and hardware requirements.

Microarchitecture simulators like gem5 [6] and Sniper [14] are heavily used to estimate
the performance of real-world workloads on a new processor design. The purpose of these
simulations is to evaluate the performance of a proposed architecture, identify potential
bottlenecks, and improve the efficiency of the hardware design before it is implemented
in physical hardware. However, simulators are orders of magnitude (typically, 10,000 x
or more [6]) slower as compared to native execution. This challenge is further exac-
erbated by the increasing complexity of modern architectures, which necessitates the
development of efficient performance evaluation techniques. The focus of this thesis is
to address this critical gap by proposing novel workload sampling methodologies that

enable fast and accurate performance evaluation of future systems.

1.2 Challenges Involved

For several decades, Moore’s law, coupled with Dennard scaling [15], fueled exponential
performance gains in single-core processors. This trend is reflected in the significant
performance gains observed for SPECint and SPECfp benchmarks as shown in Fig-
ure 1.1. However, as Dennard scaling reached its physical limits, the industry shifted
its focus to multi-core and heterogeneous architectures. This effectively extended the
performance gains predicted by Moore’s Law but also necessitated the development of

entirely new techniques and infrastructures to accurately evaluate system performance

1.2 Challenges Involved 3

23] HEEIntel [N Sun [N DEC [I [nte] [Sun N DEC
9 2 N AMD [[BM [Others g .J) N AMD W IBM W Others
= e ’ 2
£ :
0
g 2 £
5 2 5
[0
S 22 =
- &
gy g 2
[N 2 o, 22
) 25 w1 2-3
2-6 it
1995 2000 2005 2010 2015 2020 2025 2 1995 2000 2005 2010 2015 2020 2025
Year Year

(a) (b)

Figure 1.1: The normalized single-core performance scores of (a) integer and (b)
floating-point SPEC CPU benchmarks on various processors over the last 30 years.
Performance is measured using scores derived for each processor from the follow-
ing SPEC CPU benchmarks: SPECint1995, SPEC{p1995, SPECint2000, SPEC{p2000,
SPECint2006, SPECfp2006, SPECint2017, and SPEC{p2017. The data is collected from

spec.org [1].

in the post-Dennard era.

The widening performance disparity between microarchitecture simulators and the sys-
tems they model necessitates exploring alternative simulation techniques. Cycle-accurate
full-system simulation, while invaluable for design verification and performance analy-
sis, becomes increasingly time-consuming for multi-core architectures and heterogeneous
CPU-GPU architectures. GPUs, characterized by their numerous execution units with a
large number of threads, can lead to significant slowdowns when simulated on traditional
CPUs [7, 16]. For example, the detailed simulation of SPEC CPU2017 benchmarks may
take months to years, whereas that for the heterogeneous CPU-GPU applications in the
SPEChpc 2021 benchmark suite may take decades, as shown in Figure 1.2. Sampled sim-
ulation is considered a sophisticated solution to making these extremely long simulation
times tractable. This technique employs program analysis to determine representative
regions of an application for detailed simulation. Sampled simulation methodologies ex-

ploit the well-established correlation between executed code and program performance,

https://spec.org/

4 Introduction

@ - century
©
g -1 decade
p - year
g month
S day
=
o % \ oY o x \,%\%\, \%,\%‘} > Y/»%V/\:Ky/w > >
%/é/&/%/bv/‘b/\f/ /6/%@®/¢§o@@®\e®\@@ é?*oé
Q@é & N Q{D&QOQ @ S SRR LS FE
RS @%\9@, SR @@; 9@; QTP E
RCIRY q’ x N I
Q°Q Q{b} ('00:) @ <« A
N ©

QS

Figure 1.2: The estimated wall-clock times (in seconds) for the full simulation of multi-
threaded (eight OpenMP threads) SPEC CPU2017 benchmarks and SPEChpc 2021 Tiny
benchmarks (rank=1) using Reference inputs. The benchmarks were compiled with the
Intel oneAPI toolchain. We assume the simulation speed of gem5 (CPU portion) and
AccelSim (GPU portion) to estimate the wall times based on the instruction counts of
the benchmarks.

as shown in prior research [17, 18].

While there are a number of solutions proposed for sampling single-threaded [2, 19, 20,
21, 22, 23, 24, 25, 26, 27], multi-program [28], and multi-process [29, 30] applications to
accelerate simulation, these techniques are not deemed extensible for multi-threaded and
heterogeneous workloads. Multi-threaded applications tend to synchronize the threads
at certain points during execution and shared memory accesses, presenting a unique
challenge [31]. This challenge is particularly evident in heterogeneous systems, where
diverse compute units are closely integrated. In such cases, representing the amount of
work done by the threads or compute units in terms of instructions per cycle (IPC), as
shown to work for single-core performance, may lead to inaccurate measurements. It is
also challenging to accurately capture or represent the execution pattern of the compute

units, as the exact timing of each compute core can vary greatly.

Existing techniques for the sampled simulation of multi-threaded applications either do

not provide significant speedups to be practical (Time-Based Sampling techniques [32,

1.2 Challenges Involved 5

33] can show less than 10x speedup as compared to fully-detailed simulation) or apply
only to particular synchronization types (BarrierPoint [34] for barrier-based workloads).
A solution is needed that both supports generic multi-threaded applications, irrespective

of the synchronization primitives used, as well as allows for fast evaluation.

Most of the prior research on sampled simulation assumes the system to be static. How-
ever, modern hardware improves its performance and power efficiency by changing the
hardware configuration, like the frequency and voltage of cores, according to a num-
ber of parameters such as the technology used, the workload running, etc. Techniques
such as dynamic voltage and frequency scaling (DVFS) [35, 36, 37], dynamic cache
reconfiguration [38, 39, 40], TurboBoost [41], etc., have been developed to adjust the
hardware state in response to executed instructions and active processes. Additionally,
dynamic scheduling techniques [42] have been developed for multi-threaded applica-
tions. To quickly estimate the performance of multi-threaded applications running on
next-generation dynamic hardware and software, a sampled simulation methodology is
needed that can dynamically adapt to changes in the system at runtime while accurately

determining relevant performance metrics.

The profound increase in the demand for high-performance computing (HPC) resources
in recent years has driven the widespread adoption of heterogeneous architectures, such
as CPU-GPU systems [12]. However, evaluating the performance of these systems poses
a significant challenge due to the lengthy simulations involved. While some efforts have
addressed these challenges for specific workload classes [43, 44], they are often rigid with
respect to region selection and can limit the overall simulation speedup when regions
are large. Existing sampled simulation techniques for GPU kernels [16, 45, 46] may not
represent an accurate performance estimate of the entire system in such cases. This

highlights the need for techniques specifically designed for heterogeneous applications.

6 Introduction

1.3 Simulation of Multi-core Systems

We aim to solve the challenges related to multi-threaded applications and propose a novel
sampled simulation technique, which is both agnostic to the type of synchronization
primitives used and scales by the similarity exhibited by the application. We proposed
LoopPoint [8], a generic multi-threaded sampled simulation methodology that utilizes
application loops to represent the amount of work done by the threads. LoopPoint
combines several vital features, including (a) repeatable, up-front application analysis,
(b) a novel clustering approach to take into account run-time parallelism, and (c) the use
of loop-based simulation markers to divide the work into measurable chunks, even in the
presence of spin-loops. LoopPoint chooses representative regions within a multi-threaded
application that serve as checkpoints, allowing parallel simulation. These checkpoints
can reproduce the performance of the original application and can significantly reduce

simulation runtime compared to prior works.

LoopPoint considers loop-based regions demarcated by loop entries, allowing for re-
peatable regions. By monitoring the amount of work as represented by loops and not
instructions or barriers, we can isolate multi-threaded application representatives and
understand the amount of global work completed. LoopPoint enables synchronization-
agnostic application sampling for multi-threaded workloads while still scaling the amount
of work based on the representative nature of the application. The methodology has
been adapted to widely used microarchitecture simulators like gem5, Sniper, etc., as
well as in the industry. We released the representative checkpoints (as x86 executables

or ELFies [47]) of a subset of SPEC CPU2017 benchmarks for the public to use.

While sampling techniques like BarrierPoint and LoopPoint improve the efficiency of mi-
croarchitectural simulations, the granularity of the identified regions may not be suitable

for achieving comparable speedups at the RTL level. Recent works [48] attempted to

1.3 Simulation of Multi-core Systems 7

adapt prior solutions like SimPoint [20] for RTL-level simulations on Verilator [49] using
smaller region sizes aiming to improve simulation efficiency, which, however, resulted in
accuracy that is typically not acceptable. The result is that it is currently infeasible to
evaluate the performance of large workloads on the RTL level. While FPGA simulation
infrastructures, such as Firesim [50], offer a faster alternative for simulation, FPGAs are
specialized devices with inherent limitations in terms of memory capacity and process-
ing units. Therefore, it is often not possible to fit large, realistic processor models on

FPGAs.

This highlights the need for developing specialized workload sampling methodologies
that can be flexibly applied to both microarchitecture-level and RTL-level simulations.
These methodologies should support finer region granularities that align with the dy-
namic phase behavior exhibited by the application. Previously proposed workload sam-
pling methodologies typically rely on fixed-length intervals for analysis, which can often
be out of sync with the periodicity of program execution. Since an application’s phase
behavior [17, 51, 52] is strongly correlated to the code it executes, it can exhibit a hi-
erarchy of phase behaviors that can be observed at various interval lengths, rendering
conventional sampling techniques inadequate. By tailoring the sampling approach to
capture the specific characteristics and phases of the workload, more accurate and ef-
ficient sampled simulations can be performed at both the microarchitecture and RTL
levels. We proposed Viper to determine the simulation regions more systematically,
which resulted in shorter simulation regions better suited for RTL simulations. Utilizing
the innate program structures instead of fixed-length intervals allows for flexible region
sizes that are more likely to be aligned with the application periodicity, thereby reducing

the possibility of aliasing.

High-performance, multi-core processors are the key to accelerating workloads in sev-

eral application domains. To continue to scale performance at the limit of Moore’s Law

8 Introduction

and Dennard scaling, software and hardware designers have turned to dynamic solutions
that adapt to the needs of applications in a transparent, automatic way. In such cases,
profile-driven sampling methodologies may result in different performances for each exe-
cution. With this level of dynamism, it is essential to simulate next-generation multi-core
processors in a way that can both respond to system changes and accurately determine
system performance metrics. Currently, no sampled simulation platform can achieve

these goals of dynamic, fast, and accurate simulation of multi-threaded workloads.

We proposed Pac-Sim, which is designed for fast and efficient simulation of multi-
threaded applications without the need for any up-front application analysis and al-
lows for the simulation of dynamically scheduled multi-threaded applications even in the
presence of runtime hardware events — this was not possible with previously proposed
sampled simulation methodologies. Pac-Sim includes an online sampling and decision-
making phase based on predictions that rely on previously executed code, thereby com-
pletely eliminating the need for offline profiling. We incorporate application analysis
to guide sampled simulations, similar to SimPoint-like [20] methodologies but with-
out the need for upfront pre-processing, as seen in SMARTS-like [2] methodologies.
Pac-Sim makes intelligent simulation decisions through online learning and implements
lightweight online profiling, clustering, and warmup techniques for optimal performance.
Moreover, the proposed methodology can accommodate hardware state changes, soft-

ware features, and other factors that affect simulation results.

1.4 Simulation of Heterogeneous Systems

The prevalence of CPU-GPU architectures in heterogeneous computing arises from their
ability to address the evolving demands of modern workloads, coupled with their well-
established programming models. GPUs have emerged as the most widely used general-

purpose accelerators in modern data centers [53] and supercomputers [54] that accelerate

1.5 Validation of Selected Sample 9

massively parallel big data analysis [55, 56] and machine learning [57, 58] workloads.
While previous works have investigated characterizing workloads that consist of CPU
components [2, 20, 30, 32, 34] and GPU [45, 46, 59, 60] components independently, as well
as their comparative analyses [61], hybrid solutions that support analysis and workload
reduction for multiple types of heterogeneous workloads, from CPUs, GPUs, and even
custom hardware accelerators (like FPGAs), have not yet been investigated. Given
the importance of these workloads, from HPC systems to data center use, simulation
of heterogeneous workloads is key to understanding the interactions between compute

components and how their interactions can affect overall runtime performance.

We proposed XPU-Point, a unified sampling methodology for heterogeneous workloads
that can accurately (a) understand the workloads running on heterogeneous systems
to (b) build a representative sample for the fast and accurate performance analysis of
the workloads. We also (c) estimate the accuracy of the proposed sampling methodol-
ogy. XPU-Point proposes a comprehensive methodology for the sampled performance
evaluation across a broad spectrum of real-world workloads, from scientific simulations
to artificial intelligence on heterogeneous CPU-GPU architectures. This enables com-
puter architects and performance researchers to quickly estimate the performance of
long-running, heterogeneous workloads using sampled simulation, which was not possi-
ble before. While the primary focus of XPU-Point is to enable sampled microarchitecture
simulation, its methodology can be adapted to broader performance analysis and char-

acterization of several classes of heterogeneous workloads.

1.5 Validation of Selected Sample

Workload sampling can significantly speed up the simulation performance, assuming
the regions of interest (ROIs) or the representative sample found can be proven to

accurately represent the behavior of the full workload. One standard way to validate

10 Introduction

the representativeness [62, 63, 64] of the ROISs is to measure the sampling error, which is
the difference in the performance of the full workload and the extrapolated performance
using the ROIs. The performance is typically obtained through detailed simulations [65].

However, the simulation of long-running workloads is infeasible, taking months to years.

We propose ROIperf, a framework that validates the ROIs selected using workload sam-
pling methodologies. ROIperf leverages the native hardware performance counters [66]
by evaluating both the full workload and its representative regions on real hardware
systems. This approach ensures the validation of ROIs through the performance mea-
surement on real hardware instead of simulation. The methodology is particularly ben-
eficial for long-running programs for which the prevailing simulation-based validation
techniques are infeasible. While this technique does not allow for the performance esti-
mation of future hardware (where timing simulation is needed), this path enables one to
evaluate if the selected ROIs are representative and, therefore, can be used to determine
the overall performance characteristics of the workload accurately. We demonstrate the
efficacy of ROIperf by evaluating various sample selection methodologies across a wide
range of workloads. ROIperf achieves a significant speedup in validating regions selected
for simulation.

Table 1.1: Table summarizes the methodologies proposed in this thesis. We categorize
the methodologies into two main groups: Sample Selection and Validation. The table
also identifies the Analysis Type used by each methodology. Notably, some methodologies
require an upfront analysis or profiling phase to extract application-specific characteris-
tics. Additionally, the table indicates the primary applicability of the methodology.

Analysis . . -
Methodology Type Primary Applicability
LoopPoint @) Statically scheduled multi-threaded applications
Sample Viper O Multi-threaded applications on RTL-level simulators
Selection Pac-Sim o Dynamically scheduled multi-threaded applications
XPU-Point @) Heterogeneous CPU-GPU applications
Validation ROlIperf © Single-threaded and multi-threaded applications

@ Online Profiling @© Offline Analysis O Offline Profiling

1.6 Thesis structure 11

1.6 Thesis structure

The rest of this thesis is structured as follows. The background and prior work on per-
formance evaluation techniques, sampling, and simulation are reviewed in Chapter 2.
The next five chapters present the primary contributions (summarized in Table 1.1)
of the thesis. We present the motivation, methodology, and results of the LoopPoint
sampled simulation methodology in Chapter 3. We introduce Viper methodology, which
enables faster RTL-level simulations, in Chapter 4 and present our live sampled simu-
lation methodology, Pac-Sim in Chapter 5. In Chapter 6, we present the XPU-Point
methodology for the accurate sample selection in heterogeneous CPU-GPU workloads.
We introduce a novel technique ROlIperf to validate the regions of interest identified
by workload sampling methodologies in Chapter 7. Finally, we conclude the thesis in

Chapter 8 with a summary of thesis contributions and present the future directions.

Chapter

Related Work

The purpose of computing is insight, not numbers.

— Richard Hamming

In this chapter, we will review the related work for contributions to this thesis.

2.1 Workloads and Analyses

The SPEC CPU benchmarks suite is the de facto benchmark for evaluating the per-
formance of processor designs. It includes a wide variety of applications, such as 3D
rendering, biomedical imaging, and electronic design automation. These benchmarks
are designed to intensively exercise different aspects of a processor, including the front-
end (instruction fetch, branch prediction), the back-end (retirement, function units), and
the memory subsystem (cache hierarchy, prefetching). These benchmarks have large dy-
namic instruction counts in the order of trillions of instructions, which severely affects
the simulation time of detailed performance simulators. Nair et al. [67] studied the phase
behavior of SPEC CPU2006 and SPEC CPU2000 benchmarks and identified simulation
points using SimPoint. Similarly, the single-threaded version of SPEC CPU2017 has been

studied [68, 69]. Several workload characterization techniques are proposed to categorize

14 Related Work

benchmarks into subgroups that exhibit similar behaviors. Hoste et al. [70] demonstrated
that workloads may behave similarly on one microarchitecture but drastically different
on others, motivating the need to profile benchmarks in microarchitecture-independent
ways. They proposed characteristics such as the register-dependent distance, branch
predictability, instruction mix, and data stream working-set size to capture the intrinsic
software behaviors. Shao et al. [71] further introduced ISA-Independent characteriza-
tion, pointing out that specialized architectures are unconstrained by the conventional
instruction set semantics that are presumed by the microarchitecture-independent char-
acterization. They showed that their techniques are useful to rule out ISA-dependent
characteristics such as the register spilling effect and provide insights for hardware spe-
cialization. Alameldeen et al. [72, 73] demonstrated the problems of non-determinism
with multi-threaded workloads. They showed that small timing variations in the soft-
ware or the operating system can affect the process scheduling and execution path of the
program, resulting in false conclusions during design explorations. Alameldeen et al. [31]
also demonstrated that IPC can be a poor performance indicator, leading to inaccurate
estimation of speed-ups in terms of the actual run time of the programs as they may not
reflect useful work done. For example, spin-lock loops can contribute to misleading IPC
increase, and enhancements to instruction sets can decrease IPC even as performance

improves.

2.2 Characterizing Program Execution

A basic block is a sequence of instructions that has single entry and exit points with no
branches or jumps within the sequence. A basic block vector (BBV) is a data structure
that represents a set of basic blocks, storing counts for each executed basic block, and
forms a fingerprint of a region’s execution. It provides a compact representation of

the program’s control flow. Typically, BBVs are collected at regular intervals during

2.3 Sampling Single-threaded Workloads 15

the program execution. Each of these BBVs represents a region of an application that
correlates to region performance [18]. BBVs provide information about how the program

execution behavior changes over time.

LRU stack distance is the number of distinct cache accesses between consecutive accesses
of the same data item [74]. LRU stack distance vectors (LDVs) are data structures that
are used to keep track of the LRU stack distances. LDVs consist of integers associated
with each cache line, representing the number of cache lines accessed between the current
cache line and its most recent access. Shen et al. [75] showed that LDVs can be used to
characterize program behavior. While BBVs focus on analyzing control flow patterns,
LDVs provide insights into memory access patterns and cache behavior. By combining
BBVs and LDVs, a more comprehensive understanding of program behavior can be

achieved [34].

2.3 Sampling Single-threaded Workloads

SimPoint [20] uses basic block vectors (BBVs) as unique signatures to represent instruc-
tion streams with fixed or variable length intervals based on the fact that code sections
that perform similar workloads should traverse similar sequences of basic blocks. The
BBVs are then clustered using the k-means clustering [76] algorithm to identify the
number of phases within the application. A representative region is selected from each
cluster that is assigned a weight proportional to the number of regions that belong to
the cluster. The SimPoint methodology was extended to support x86 applications in
PinPoints methodology [24, 77] using Pin for the BBV generation. However, SimPoint
did not account for performance differences between similar instruction streams due to
micro-architecture and hardware differences, such as the cache states and clock frequency
changes, let alone thread interactions in multi-threaded workloads. SMARTS [2] pro-

posed a systematic sampling framework that simulated programs by alternating among

16 Related Work

fast-forward, warm-up, and detailed simulation phases and obtaining IPC samples for
each detailed simulation. The program IPC can then be estimated with high confidence
using statistical methods. However, it can only be used to estimate the overall IPC
of the program, but not the TPC trace throughout the program execution. Another
work on software phase markers [26] uses loops to determine simulation regions but is
limited in that they only provide support for single-threaded applications using phase
markers denoting phase changes. LiveSim [27] is another simulator that uses statistical
sampling with confidence levels to estimate IPC. They extended the framework by using
in-memory checkpoints at sample regions to enable interactive simulations. pFSA [78]
uses hardware virtualization to spawn processes that fast-forward to regions of interest
(ROIs) at near-native speed and perform detailed simulations in parallel. They also
proposed a novel cache warm-up technique based on estimating the error induced by

insufficient cache warming.

2.4 Sampling Multi-threaded Workloads

Ekman et al. [79] propose a methodology to reduce the number of simulation points
using a matched-pair comparison method to estimate the full application performance.
SimFlex [30] extends SMARTS methodology to support multiprocessor applications with
an increased sample length. SMARTS and SimFlex use random sampling, and there-
fore, the samples are not necessarily representative. Perelman et al. in [52] extend the
Simpoint methodology to use for phase analysis of multi-threaded workloads. COT-
Son [80] targeted the full software stack and complete hardware models to ensure both
high performance and accuracy. Time-based sampling methodologies [32, 33] introduced
a generic simulation framework for multi-threaded applications based on the progressed
time rather than instruction count. However, this bounded the total simulation time to

the length of the program execution, not the structures of the program. Both SimFlex

2.5 Sampling GPU Workloads 17

and Time-based Sampling did not exploit knowledge from the software, such as barriers,
tasks, and loops, which allowed us to break down programs into representative regions
in an informed way. BarrierPoint [34] and TaskPoint [43] leveraged the structures in
multi-threaded programs by using barrier synchronization primitives and tasks in the
task programming paradigm as the units of work, respectively. This allowed automatic
identification of regularities in the software because of the intentions of these software
primitives. However, these methods rely on particular programming paradigms, which

limits their generalities.

2.5 Sampling GPU Workloads

GTPin [81] is an ahead-of-time (AOT) instrumentation tool for workloads that run on
Intel GPUs. In AOT instrumentation, the binary is modified to insert monitoring or
profiling code before the actual execution. Leveraging GTPin, Kambadur et al. [59] pro-
posed a solution to sample workloads running on Intel GPUs. They utilize kernel names,
arguments, and basic block entries to select representative regions of the GPU programs
at a kernel-level granularity. Yu et al.[82, 83] propose a SimPoint-like strategy to detect
representative loops that can be used to extrapolate kernel performance. TBPoint [45]
uses BBVs and other kernel-specific features to identify representative kernels, whereas
Principal Kernel Analysis (PKA) [46] monitors the IPC difference between sampling
units to determine the regions to fast-forward. Both TBPoint and PKA enable the sam-
pled simulation of GPU workloads at both the inter- and intra-kernel levels. Sieve [60]
extends on prior works to show that using the kernel name and instruction count allows
for better sample selection. Photon [16] utilizes GPU Basic Block Vectors (BBVs) for
inter-kernel and intra-kernel workload sampling, resulting in significant improvement in

sampling accuracy compared to previous approaches.

18 Related Work

2.6 Analytical Modeling

Eyerman et al.[84] proposed a model to divide the dynamic instruction stream into
long-latency miss events, such as branch mispredictions and cache misses that limit
the scope of Out-of-Order behaviors. Each interval of the instruction stream can then
be characterized by an analytical latency model based on interval length and latency
type, and the overall performance can be reconstructed from these discrete intervals.
RPPM ([85] used multiple performance indicators such as the number of instructions,
branch entropy, and long-latency loads to project single-threaded performance. It also
takes into account synchronization overheads by identifying critical paths to project
multi-threaded performance. However, the fixed mathematical formulation prohibited
the opportunity to estimate the performance of future hardware that has not been seen
before, which requires different analytical formulations. Statstack [86] is proposed to
estimate the cache miss ratio of a fully associative cache with LRU replacement policy. It
uses reuse distance samples (RDS) - the number of memory references between successive
same cache line accesses - to estimate the stack distance distribution. This allows the
cache miss ratio to be accurately estimated for a wide range of cache sizes and programs.
Linear branch entropy [87] is proposed to model the branch miss rate of any branch
predictor by finding a linear relation between the branch entropy and the sampled branch

miss rate per configuration of a branch predictor.

2.7 Warmup Techniques

There are primarily three kinds of warmup techniques: statistical warming, checkpoint-
based warming, and functional warming. Statistical warming techniques reconstruct
the cache state by collecting all the memory access information. For example, Memory

Reference Reuse Latencies (MRRLs) [88] records the number of instructions between

2.8 Simulation Infrastructures 19

consecutive references to each unique memory location. Similar to MRRLs, Memory
Time-stamp Record (MTR) [5] and Boundary Line Reuse Latency (BLRL) [89] also
choose to record memory access information but using different methods. MTR records
the snapshot of memory reference patterns, while BLRL considers reuse latencies across
the boundary line of the pre-sampled and the sampled regions. Unlike prior works,
DeLorean [90] collects only a selected number of key reuse distances to speed up the
statistical warming. CoolSim [91], on the other hand, uses virtualized fast-forwarding to
speed up the performance of collecting memory reuse information. Memory Hierarchy
State [92] is a checkpoint-based warmup technique that saves the state of all the major
microarchitecture components into a touched memory image (TMI) that decreases the

cost to load and store this data.

2.8 Simulation Infrastructures

Gemb [6] is a cycle-accurate simulator that models CPU pipelines and cache protocols
in fine granularity. However, running large multi-core benchmarks is slow due to their
detailed models. Sniper [14] and ZSim [93] are fast multi-core simulators that use binary
instrumentation to speed up functional simulations. Sniper pipes program execution
traces from the binary instrumentation to its modeling backend for detailed modeling of
various micro-architecture components. This gives Sniper high modularity and flexibil-
ity for employing different modeling strategies at different granularities. ZSim proposed
a two-phase parallelization technique to speed up simulation and used user-level virtu-
alization to enable fast simulation for thousands of cores. While ZSim can provide high
simulation throughput, instruction schedules need to be computed up-front, and apart
from memory hierarchy changes, it does not provide the capability to adjust these sched-
ules at run time. RTL-level simulators are used to simulate and verify the behavior of

digital circuits described at the Register Transfer Level (RTL). Among the most widely

20 Related Work

used RTL simulators are Verilator [49] and VCS [94].

There are several GPU simulators and heterogeneous CPU-GPU simulators available.
GPU simulators are extremely slow [7] as compared to the real execution, as they run
on the CPU, which typically has fewer cores than the GPU being simulated. Trace-
driven GPU simulators, such as MacSim [95], execute functionally generated traces with
a timing model to generate the performance results. Execution-driven GPU simulators,
such as Multi2Sim [96], gem5-gpu [97], MGPUSim [98], gem5 APU [99, 100] and GPG-
PUSim [101], directly execute the binary for performance simulation. Simulators like
Accel-Sim [7] and NVArchSim [102] support both execution- and trace-driven simula-
tion modes. Among these simulators, Multi2Sim, gem5-gpu, MacSim, and gem5 APU

support the simulation of heterogeneous CPU-GPU workloads.

2.9 Synthetic Workload Generation

Synthetic workload generation techniques involve creating lightweight workload clones
that mimic the behavior of real-world applications. These synthetic clones are typically
used in studies related to performance evaluation and benchmarking. MAMPO [103] is a
multithreaded synthetic power virus generation framework targeting multicore systems.
It uses a genetic algorithm to search for the best power virus for a given multicore system
configuration. SynchroTrace [104] is a trace-based multi-threaded simulation method-
ology that accurately replays synchronization- and dependency-aware traces for chip
multiprocessor systems. SynchroTrace achieves this by recording synchronization events
and dependencies in the traces, allowing for the replay on different hardware platforms.
GPGPU-Minibench [83] captures the execution behavior of existing GPGPU workloads
in a profile, which includes a divergence flow statistics graph (DFSG) to characterize the
dynamic control flow behavior of a GPGPU kernel. G-MAP [105] statistically models

the GPU memory access stream locality by considering the regularity in code-localized

2.10 Checkpointing Techniques 21

memory access patterns and the parallelism in the execution model to create miniatur-
ized memory proxies. Mystique [106] is yet another technique that generates benchmarks
from production AI models by leveraging PyTorch execution traces. Ditto [107] focuses
on synthesizing workloads for data centers mimicking traditional CPU performance be-
haviors, like branch mispredictions, cache miss rates, and IPC. However, these techniques

may not be applicable to all workload studies involving cache compression or prefetching.

2.10 Checkpointing Techniques

Checkpointing is a technique used to save the state of a system at specific points in time.
Architectural checkpoints preserve the software-visible state, including the register files
of cores, memory, and I1/O device states. Widely used emulators like QEMU [108] and
Simics [109] are used to maintain these states. Microarchitectural checkpoints capture

the states of components such as pipelines, caches, branch predictors, and TLBs.

ELFies [47] are user-level executable checkpoints for regions of interest. Extracted from
deterministic replays of the full-program recording used for profiling, ELFies inherently
capture the initial state of the ROI as observed during profiling. This significantly
reduces the impact of non-repeatability, as it only affects the native execution of the
ELFie itself, not the entire program execution leading up to and within the ROI. How-
ever, imprecise reconstruction of the operating system state during ELFie creation can
lead to system call failures or unpredictable execution behavior. These discrepancies
can introduce deviations from the original execution and potentially cause application

failures.

MINJIE [48] is an open-source platform that integrates a set of tools for pre-silicon
validation, verification, etc. MINJIE provides an instruction set interpreter/emulator
called NEMU, which is used for checkpoint generation. The checkpoints are restored

later to simulate them in parallel on Verilator [49].

Chapter

LoopPoint: Checkpoint-driven Sampled
Simulation for Multi-threaded Applications

Truth... is much too complicated to allow for anything but

approximations.

— John von Neumann

In this chapter, we introduce a novel sampling technique for multi-threaded applications
called LoopPoint, which is both agnostic to the type of synchronization primitives used
and scales by the similarity exhibited by the application. LoopPoint combines several vital
features, including (a) repeatable, up-front application analysis, (]o) a novel clustering ap-
proach to take into account run-time parallelism, and (c) the use of loop-based simulation

markers to divide the work into measurable chunks, even in the presence of spin-loops.

3.1 Introduction

Sampling is a well-known application workload reduction technique that traces its roots
back decades. From the earliest works [2, 20], researchers have been able to identify reg-

ularity in single-threaded applications and exploit that to sample large applications into

24 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

B Detailed Sim B8 Time-based Sampling B8 BarrierPoint Hlll LoopPoint

1 year

1 month

1 day

Sim. Time (in hours)

1 hour

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

Figure 3.1: Approximate time to evaluate the performance of multi-threaded bench-
marks with different methodologies. The average result and error bars represent the es-
timated simulation time for all benchmarks in the corresponding suite and input sets, as-
suming infinite simulation resources (the longest simulation region determines the overall
simulation time). Benchmarks were configured with 8-threads and passive OpenMP wait
policy, assuming a total simulation speed of 100 KIPS.

smaller application representatives. Because of the repeated execution of regions with
similar behavior, these techniques have been shown to accurately predict the original

workload behavior, and significantly reduce the simulation time needed [2, 20].

Apart from sampling, researchers have developed a number of complementary techniques
to reduce the overall amount of work required to simulate applications in detail, including
input size reduction [110] and benchmark synthesis [111]. While each technique presents
its benefits and challenges, sampling has emerged as a straightforward way to maintain
the original application characteristics and accurately extrapolate performance while

reducing the overall simulation burden.

With the increasing number of cores in modern processors, multi-threaded applications
can exploit a large amount of compute through task and loop parallelism. Simulating
these large, multi-threaded applications is extremely difficult, even on modern simula-
tors. Ultra-fast FPGA-based simulators [50] require detailed implementations and are

capacity-limited, preventing the simulation of large processors and large parallel systems,

3.1 Introduction 25

and fast software-based simulators [14, 93] still require a significant amount of time to
run an entire large, parallel workload to completion. Multi-threaded applications are
inherently difficult to analyze [73] as the threads can go to sleep at any time, threads
interfere with one another, and complex behavior emerges from regular application pa-

rameters like misalignment of threads to cores and unequal cache distribution.

Some of the earliest multi-threaded sampling solutions prove effective when the threads
themselves do not synchronize but can still interact with the memory hierarchy [30].
Any amount of synchronization requires thread progress to be measured in time to
track the amount of progress or parallelism in the application. The move towards a
time-based sampling methodology has led to the development of sampling techniques
for synchronizing multi-threaded applications. These techniques [32, 33] describe one of
the first generic sampling solutions for multi-threaded applications. However, the over-
all simulation speed is still bound to the total application length, which dominates the
simulation time of this methodology. Later proposals, in the form of application and
synchronization-specific methodologies [34, 43, 44], exceeded the performance of time-
based sampling and allowed for the simulation complexity to be bound to application
diversity, not application length. Unfortunately, these methodologies are tied to specific
application characteristics (the use of barriers [34] or tasks [43, 44]), and therefore do not
represent a general sampling solution that covers all application types. In fact, as Fig-
ure 3.1 demonstrates, both time-based sampling, and BarrierPoint (when inter-barrier
regions exist to simulate), approach a simulation time of one year to simulate the
sample when considering large, multi-threaded applications. Clearly, current method-
ologies are insufficient for simulating the largest, most realistic benchmarks like the

multi-threaded SPEC CPU2017 with the ref input set.

In this work, we aim to overcome the limitations of these prior works to enable synchronization-

agnostic application sampling for multi-threaded workloads while still scaling the amount

26 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

of work based on the representative nature of the application. To accomplish this goal, we
present the LoopPoint methodology that reduces an application to a few representative
regions, called looppoints, by taking into account several key factors like understanding
(1) where to simulate which requires (la) an accurate analysis methodology that can
provide for reproducible analysis, and (1b) using a precise clustering mechanism that
partitions the regions to reduce the workload into its representative components. In
addition, our methodology presents (2) how to simulate the regions to allow the appli-
cation to take advantage of the underlying hardware, while not constraining execution

to a deterministic path [72] that might not exhibit true application behavior.
We make the following contributions in this work:

1. A representative simulation region selection methodology called LoopPoint suit-
able for the performance projection of multi-threaded programs (more details on
supported workloads in Section 3.3.11) based on using loop iterations as the unit

of work.

2. A technique to enable multi-threaded sampled simulation by filtering out spin-loops
during region identification, selecting repeatable loop boundaries of a practical

region size, and accurately extrapolating performance characteristics.

3. The development of a process to record a constrained application checkpoint for
accurate analysis and subsequently simulate the workload’s unconstrained behavior

during simulation.

4. A comprehensive evaluation of the LoopPoint methodology to demonstrate the
potential for speedup while maintaining accuracy using the OpenMP-based multi-
threaded subset of SPEC CPU2017 benchmark suite and NAS Parallel Benchmarks
(NPB).

In the following sections of this work, we first provide an overview the LoopPoint method-

3.2 Fast and Generic Multi-threaded Simulation Requirements 27

ology, results, and evaluation. In Section 3.2, we detail each of the components needed
for a fast, accurate, and generic multi-threaded sampled simulation. In Section 3.3, we
describe the LoopPoint methodology. We then detail the experimental infrastructure
and setup in Section 3.4, evaluate the LoopPoint methodology in Section 3.5. Finally,

we compare to related work (Section 3.6) and conclude the chapter (Section 3.7).

3.2 Fast and Generic Multi-threaded Simulation Require-

ments

Time-based sampling methodologies [32, 33] present the first workable solution to sample
generic multi-threaded applications. However, the speed-ups achieved (up to 5.8 x) using
these methodologies are limited by the need to visit the entire application. To achieve
high speed-up while maintaining accuracy during multi-threaded workload sampling,
we need to consider the inherent application regularity and the amount of parallelism
present in the workload at any particular time. We need to define a unit-of-work that is
suitable to exploit the application regularity and, at the same time, is applicable across
a variety application and synchronization types. The key is the ability to (1) recognize
representative regions in a generic way across multi-threaded workload types, and to
(2) classify these regions considering application parallelism. To this end, we present a
new application sampling methodology called LoopPoint that (a) uses loop iterations as
the main unit of work, (b) utilizes constrained pinballs [77] (user-level checkpoints that
allow for reproducible analysis), (¢) employs heuristics to remove synchronization during
analysis, but use them during simulation, and (d) performs unconstrained simulation
of the selected simulation regions allowing for fast and accurate workload evaluation.

Figure 3.2 shows the overall methodology.

Sampling methodologies that rely on instruction counting can perform poorly when

dealing with multi-threaded applications [31]. We demonstrate this by performing a

28 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

Program
binary, inputs

Looppoints
Specification

'
H Application
1 Execution

H Recording

' ‘ I
'

'

'

'

'

Per-thread

Feature
Vectors

Checkpoint-driven

Region
Checkpoints

Binary-driven

Figure 3.2: LoopPoint-based region selection and simulation for multi-threaded work-
loads. The workload is captured for analysis and region selection based on loop infor-
mation. The representative regions are simulated using a checkpoint-driven method as
well as by binary-driven unconstrained way allowing for extrapolation of performance
and other metrics of interest.

naive adaptation of Simpoint [20] for multi-threaded applications of SPEC CPU2017
that use eight threads. With this methodology, the average error in predicting the
runtime of the applications using active wait policy is 25% and as high as 68.44%,

whereas errors for the passive wait policy are as high as 20%.

Previous works like the BarrierPoint [34] methodology use inter-barrier regions as the
unit of work, whereas the TaskPoint [43] methodology applies only to task-based applica-
tions that use task instances as the unit of work. Unfortunately, BarrierPoint, when used
to sample large applications with a small number of barriers, can yield negligible simu-
lation speed-ups. This can be common, especially while sampling realistic workloads for
which the length of inter-barrier regions is a bottleneck. BarrierPoint, therefore, is not
practical for such workloads. Figure 3.1 shows how the instruction count (and there-
fore simulation time) of an inter-barrier region grows with larger input sets of SPEC

CPU2017 and NAS Parallel Benchmarks (NPB) [112] with eight threads. BarrierPoint

3.2 Fast and Generic Multi-threaded Simulation Requirements 29

works well for NPB with the A input size [34], but as the input sizes grow, for classes
C, D and E, inter-barrier regions become so large that it becomes impractical to use
BarrierPoint for those input sets. The same is the case with SPEC CPU2017 using ref

inputs.

Instead, LoopPoint uses loop iterations as the unit of work with the goal to apply to
generic multi-threaded programs. The idea of using loop iterations as slices for single-
threaded programs was proposed in [26]. With loop entries as slice boundaries, the
simulation regions can then be specified using a (PC, count) pair for the starting and
ending loop entry for each simulation region. By monitoring the amount of work, as
represented by loops, and not instructions or barriers, we can isolate multi-threaded
application representatives and understand the amount of global work completed. For
multi-threaded programs, one additional constraint is that the loop entries that are
chosen to start and end slices should be those doing meaningful work. Automatically
separating loops doing real work from synchronization can be a daunting task. How-
ever, we can use application knowledge or synchronization mechanism details to filter
out synchronization loops. For example, the Intel OpenMP run-time uses functions in
the libiomp5.so library for synchronization; hence loops from that library should not
be counted towards work done while profiling the application. Alternatively, if the syn-
chronization routines are known before-hand, the code from such routines can likewise

be avoided.

Where to simulate. As detailed cycle-accurate simulation can be time-consuming,
architects and researchers often use sampling to decide where to simulate by choosing
small portions or regions of long-running program executions for simulation. Sampling
requires (a) choosing the regions so that they are representative of the whole program
behavior and (b) projecting the whole-program performance based on the simulation

results of the selected regions. SimPoint [20] is a popular simulation region selection

30 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

approach. It works by dividing the program execution into smaller slices and collecting
an execution signature for each slice. K-means clustering is used to determine phases
from slice signatures. One representative per cluster is then chosen with the weight
corresponding to the cluster size. Since these representatives are designed to be micro-
architecture independent, the signature collected for each slice needs to be dependent
only on the program execution and not based on any micro-architecture dependent
metric. Typical signatures used include the BBV (Basic Block Vector) which contains
execution counts of various basic blocks (single-entry/exit code blocks). How to slice a
program’s execution into regions is an important decision. For single-threaded programs,
using a fixed instruction count called the slice size has been shown to work well [20].
In our work, we keep slices of approximately similar sizes demarcated by loop entries.
The region selection is based on the replay of a previously recorded whole-program
execution as a pinball. According to the micro-architecture of the recording machine,
the synchronization seen there can be different from the synchronization seen during
unconstrained simulation. We, therefore, augment our region selection methodology to
make a selection only on the real computation or work done. The heuristics described
earlier to avoid synchronization loop entries as region boundaries can also be used to
filter out (to execute but not count) synchronization code during profiling for region

selection.

How to simulate. A critical decision that the simulator developers need to make is
how to simulate, i.e., how to connect the application in consideration to a simulator.
The most commonly used methods are (1) binary-driven where a program binary is
executed during simulation feeding instructions to the simulator, (2) checkpoint-driven
where a snapshot of selected region memory /register state and a list of injection events
are used to drive the simulator, and (3) trace-driven where an instruction-by-instruction
recorded state is fed to a timing-only simulator. The choice of how to simulate depends

on several factors, such as ease of deployment, cost of generation, and flexibility of the

3.3 The LoopPoint Methodology 31

evaluation. For this work, we use both binary-driven and checkpoint-driven simulations
for our evaluation, although the implementation itself is generic and supports any of
these simulation methods. Checkpoints are easier to share among multiple users than
program binaries whose execution might require complex setup and input availability.
We propose to capture regions selected by LoopPoint as pinball [3] checkpoints so they

can be used to drive PinPlay-based simulators.

By default, PinPlay supports constrained replay of pinballs where the shared memory
accesses among threads are repeated in the order captured during recording. Simu-
lation based on such constrained replay will repeat the thread ordering based on the
micro-architecture of the machine on which the pinballs were generated. However, we
ideally want the target, simulated micro-architecture to decide the thread behavior dur-
ing simulation. To achieve that, we also use binary-driven simulation of the regions
selected by LoopPoint using stable (PC, count)-based boundaries defining those regions.
Therefore, the simulation proceeds as though the region was executed natively on the
simulated micro-architecture. Another technique to achieve unconstrained simulation

using pinballs is to convert them to executable checkpoints, called ELFies [47].

3.3 The LoopPoint Methodology

In this section, we explain the different parts of the proposed methodology, LoopPoint.
We start with an upfront analysis of the application to determine its behavior and to
identify loops, as shown in Figure 3.2. This is a one-time step and we use the informa-
tion collected here for clustering regions to choose representatives. The representative
regions are then simulated with sufficient warmup. The simulation results enable us to

reconstruct the overall application performance.

32 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.3.1 Selecting a Unit of Work

Multi-threaded applications may use different execution paths with different runs, and
therefore the use of IPC to evaluate the performance of multi-threaded workloads is
infeasible [31]. LoopPoint proposes a strategy that identifies regions of interest in terms
of work done by each thread. We define the unit of work as the actual amount of
compute done within a slice of an application. For an unmodified application with the
same input set, the unit of work chosen needs to remain the same for each application
execution regardless of the properties of the underlying hardware, although the number
of instructions executed may vary each time. The generality of the chosen unit of work
is crucial for application sampling as this determines the amount of simulation speedup
achieved. We would want the chosen unit of work to be large in number within the

program, to be one that repeats itself, and to remain unchanged over multiple executions.

We consider the number of loop iterations as the unit of work done. Program loops are
ubiquitous across application domains and the number of iterations of any particular
loop doing real computation as opposed to synchronization can remain constant over
multiple executions for an unmodified application and for a fixed input size. In a multi-
threaded environment, we consider loop execution, ignoring spin-loops (one form of
active synchronization), to compute the amount of work done. Spin-loops contribute to
the IPC of the application and consume CPU cycles, however, they do not contribute to
the meaningful work done by the particular thread (waiting cannot be considered work

completed). This is the key to LoopPoint methodology we present here.

3.3.2 Understanding Parallelism

One of the fundamental requirements of a multi-threaded sampling methodology is the
ability to understand how the parallelism of an application changes, over time, and to

use that information to drive the representative selection process. In fact, understanding

3.3 The LoopPoint Methodology 33

parallelism in a generic way is one of the main insights of this work. To accomplish this,

we continue to use worker loop instructions as the key metric for work completed.

Program phase behavior is an important aspect to consider while sampling applications.
A phase is a set of slices in a program’s execution that shows similar behavior, regardless
of where they appear within the execution. The locations in source code whose execu-
tions correlate to a phase change in the application are called software phase markers
[26]. The software phase markers can accurately identify the phase changes that oc-
cur in an application execution irrespective of the underlying microarchitecture. These
are execution points that can act as simulation region boundaries that are invariant
across multiple application executions. We identify source-level program loops as possi-

ble checkpoints which form the basic building blocks of a program.

Capturing BBVs is an essential way to understand the fingerprint of an application
execution region. We consider the slice-size to be approximately N x 100 million global
(all-threads) instructions that align with loop boundaries for a N-threaded application.
For example, we collect BBVs in intervals of approximately 800 million instructions for
an 8-threaded application. We ignore the instructions executed in spin-loops or any other
synchronization code while collecting the BBVs. The end of a region specified by a BBV
is the next loop entry once the instruction count target is achieved. Although this can
be implemented in several ways (as described in [26]), we do not currently differentiate
between inner and outer loop markers and do not restrict specific threads to indicate
loop boundaries. The loop entries that serve as region markers need to be worker loops
and not spin-loops. We assume that the spin-loops are found only in the synchronization
library (for example, OpenMP), and therefore, we end a region only at a loop entry that
is present in the main image of the application. The per-region BBVs of each thread
are concatenated into a longer, global BBV that represents a multi-threaded region.

This guides the clustering phase when there are regions that exhibit non-homogeneous

34 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

thread behavior. Figure 3.3 shows the ratio of the number of instructions executed by
each thread as the application progresses. The application 657 .xz_s.2, as an example,

clearly exhibits a non-homogeneous thread behavior.

There are a number of reasons to maintain sufficiently large per-thread slices (approx-
imately 100 million instructions). If a smaller slice-size is chosen, a large number of
simulation points may be required, and such regions are highly sensitive to warmup
and aliasing issues [32]. At the same time, we also need to make sure that there are
enough intervals in the application for the clustering algorithm to work efficiently [23].
Prior analyses [20] on single-threaded applications showed that fixed size (of 100 million
instructions) intervals of execution can be used to identify phase behavior. Using vary-
ing length intervals [25] corresponding to the application periodicity can help mark the
phases more accurately. In LoopPoint, we use approximately similar interval lengths,

however, the methodology can also be used with varying length intervals.

While we profile an application for BBVs or any feature vectors, we make sure that all
threads in the application make the same amount of forward progress during analysis.
This is to stabilize the collected profile for any thread imbalance that is caused by
external events on the host processor (and is unrelated to the analysis environment).

We call this method to enforce equal progress between threads flow-control.

3.3.3 Marking Region Boundaries

Every region in an application has its boundaries at a loop entry. The regions need to
be represented so that it is repeatable across multiple executions of the application. In
the case of single-threaded applications, instruction count can be used to define regions
reliably. However, for multi-threaded applications, this does not hold. We describe
the start and end of each region as an ordered-pair (PC, count), where the PC is the

address of the corresponding region boundary marker instruction and the count is the

3.3 The LoopPoint Methodology 35

pop2_s.1 active xz_s.2 active
1.0 thread0 —— thread2 thread4 thread6 1.0 thread0 thread] thread2 — d3
m threadl —— thread3 thread5 thread7
0.8 0.8
2 .2
b b
= 0.6 Z 0.6
= =
= =
3 3
9 9
§ 0.4 g 0.44
= k=
0.2 0.2
0.0 1 0.0 1
0 S0 100 150 200 250 300 350 0 10 20 30 40
global slice number global slice number
(a) (b)

Figure 3.3: The above graphs show the variation in the share of the per-thread in-
struction count on a per-slice (with a slice size of 800M global instructions) basis as the
application progresses. If we consider a multi-threaded region, the basic-block share is
different for all threads. This is subtly captured by concatenating the per-thread execu-
tion fingerprints.

execution count of the marker at the start and end of the region. The value of count for
a particular region size is invariant across multiple executions, which represents the unit
of work done. Hence, these markers remain valid simulation points even in the presence

of spin-loops.

3.3.4 Identifying Loops using DCFG

Loops are often found in typical applications, and the number of loop iterations can
remain constant for an unmodified application for a particular input over multiple exe-

cutions. This is the key to our generic methodology which is explained below in detail.

We employ a Dynamic Control-Flow Graph (DCFG) to identify the regions that repre-
sent loops. A DCFG is similar to a classical control-flow graph with a primary difference:
Each edge of a DCFG is augmented with a trip count to indicate the number of times the
edge was traversed. The source code locations whose executions correlate with a phase

change are called software phase markers [26]. The software phase markers identify the

36 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

638.imagick_s/magick/morphology.c 34 i
2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2843 #pragma omp parallel schedule(static,4) shared(progress,status) \ 5] ‘ } |
2844 magick_threads(image,result_image,image->rows,1) - B | i { i i | | | ‘
2845 #endif - 14
2846 (y=0; y < (ssize_t) image->rows; y++) - i
2847 { 0 i i i i i

0 500M_.--"1000M I500M--..._2000M 2500M 3000M
2886 (x=0; x < (ssize_t) image->columns; x++) Time (cycles)
2887 {
3021 (v=0; v < (ssize_t) kernel->height; v++) { - 348 2
3022 (u=0; u < (ssize_t) kernel->width; u++, k--) { - § E
3034 Y /Eur/ 59007160 = § §

142 2
3037 Y orev 831086 2 3
3342 } /% x */ ﬂ 2958 oL . T T T T -
3357} /*y */ 8- 0 5M 10M 15M 20M 25M

..... #iterations . Time (cycles)

(a) (b)

Figure 3.4: An example of a representative region identified by LoopPoint. (3.4a)
The numbers represent iterations of the corresponding loops that form the 8-threaded
region. The start point and end point of the chosen region are at line 3022, the entry
point of loop . (3.4b) The top graph shows the variation of IPC over time for the full
application run, while the bottom graph shows that of the chosen region. The (PC,
count) boundaries are marked inside the IPC graph of the region.

phase changes that occur in an application execution irrespective of the underlying mi-
croarchitecture. These phase markers need to repeat in number and order across multiple
program executions so that they can meaningfully act as simulation region boundaries.
We choose headers of loops that are in the main image of the program, assuming that the
synchronization loops are in the libraries. The number of iterations of synchronization
loops may vary across different program executions. The DCFG of the whole program
execution is instrumented for loop header instructions to identify a subset of loops from
the main image. Loop header instructions are instrumented to emit Basic Block Vectors
(BBVs) after slice-size number of instructions. Figure 3.4 shows a region identified using
DCFG. The region is contained in the 638.1imagick_s.1 application with train inputs

and eight threads.

3.3 The LoopPoint Methodology 37

3.3.5 Clustering Representative Regions

Once an application is profiled, and region boundaries marked, we will have a collection
of variable-length regions. These BBVs (with spin-loops filtered) represent the state
of the application and also allow one to understand the amount of work accomplished
by each thread. For example, in regions where a single thread is active, the thread
will no longer interfere with memory requests from other threads, potentially leading
to faster single-thread execution. However, a fully populated system with N threads
would continue to interfere, potentially slowing overall progress. The amount of time
the application executes becomes the combination of the amount of work executed in
one quantum, together with the runtime attributed to that quantum. These quanta can
then be clustered in order to identify similar work, and therefore identify similar runtime
behavior. Although BBVs are used in this work, other feature vector information [34]

can be concatenated on a per-thread basis and can be used in this methodology.

The BBVs are projected down to 100 dimensions by random linear projection to bring
down the computing requirements for the clustering algorithm. We use the K-means
clustering technique [113] along with a BIC goodness criteria [114] to select clustering in
a method similar to previous work [20]. The K-means algorithm requires the selection of
the maximum number of clusters that we can expect, max K, for which we use mar K =

50.

Because we use BBV data that represents both parallelism and work executed, we can
now cluster the regions and use the resulting clusters for workload extrapolation. We
choose the BBV that is closest to the centroid of each cluster to be the representative
of the cluster. We generate the region that represents each cluster from the original

application based on the region boundaries and call them looppoints.

38 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.3.6 Warmup

For high performance, we will want to simulate each looppoint separately, in parallel,
given enough resources. For accurate results, the microarchitectural state needs to be
warmed up at the start of the simulation of each region. There are several techniques
[5, 90, 115] proposed to warmup cache state. For binary-driven simulation, we warm up
each region from the start of the application to minimize warmup error. Likewise, for
checkpoint-driven constrained simulation, we use a sufficiently large warmup region pre-
ceding the simulation region. Determining the appropriate amount of warmup required

for each representative region falls outside the scope of this work.

3.3.7 Runtime Extrapolation

Once the representatives are simulated, we can estimate the overall application execution
time through the use of weight-based extrapolation. In this methodology, we use the
percentage of work that this region represents, based on the instruction count of the
entire collection of representatives that have been clustered together relative to the total
amount of work done in the original application (quantum multiplier), to extrapolate
the final runtime performance. The instructions that contribute to spin-loops are not
considered here. The final step of this methodology uses the simulation results of these
identified representatives, along with the multiplier, to reconstruct the overall workload

runtime.

Our runtime extrapolation uses the below mentioned formula considering N looppoints

identified as rep; to repy:

repN
total runtime = Z runtime; X multiplier; (3.1)

i=repi

The multiplier of a looppoint is the ratio of the sum of the filtered instruction counts

3.3 The LoopPoint Methodology 39

from all of the regions that are represented by the looppoint to the filtered instruction

count of that looppoint.

m inscount;
multiplier; = 2i=0 o (3-2)
inscount;

where m is the number of regions that are represented by the j* looppoint.

We evaluate our region selection methodology by comparing the extrapolated runtime
based on region simulation with the actual runtime based on the whole-application sim-
ulation to compute the prediction error. We demonstrate runtime extrapolation using
the above formula, but this methodology can be used for any event of interest, such as

cache and branch miss counts, for example.

3.3.8 Reproducible Application Execution for Accurate Analysis

The execution path of a multi-threaded application can vary from run to run due to
several factors. Ome requirement to use this methodology is the ability to analyze a
multi-threaded application in a repeatable way. Traditional execution environments do
not support this type of execution to allow for reliable, reproducible execution. We
leverage Intel’s Pin [116] and Pinplay [77] tools to generate reproducible, constrained,
multi-threaded execution snapshots, called pinballs, to allow for repeatable analysis.
Pinballs are more advanced than a trace file in that they contain a snapshot of the
execution state of an application (registers and memory). By replaying the Pinball, we
can analyze the properties of an application to collect the microarchitecture-independent

execution signatures of the application.

3.3.9 Putting it All Together

Together, the combination of reproducible replay of applications, along with the iden-
tification and clustering of workload characteristics, allows us to build an end-to-end

methodology to identify workload representatives for performance extrapolation. Previ-

40 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

ous works [34] have shown that extrapolation in this manner does apply to runtime, as
well as other metrics of interest. The insights with respect to the identification of appli-
cation parallelism, as well as the constrained, reproducible execution of the workloads,
allow us to analyze, cluster, and extrapolate multi-threaded workloads across a number

of synchronization types.

3.3.10 Speed-up Potential

One of the most significant benefits of a checkpoint-based methodology is the ability
to substantially reduce the amount of work that needs to be simulated to estimate the
entire application performance. Simulator performance relates directly to the required
length and number of regions to simulate. In addition, checkpoints can be simulated in

parallel, with enough resources available, speeding time-to-results significantly.

3.3.11 Workload Applicability

LoopPoint targets statically scheduled multi-threaded workloads regardless of the syn-
chronization mechanisms used in order to simulate them in a faster way that was not
possible before. The methodology is particularly effective for loop-intensive applica-
tions. For other workload types or scenarios involving aggressive loop optimizations, the
heuristic can be adapted to utilize function calls or database transactions as the unit of
work. Dynamically scheduled multi-threaded applications would require a different type
of methodology for sampling due to their non-deterministic nature. This is because such
applications can interact with other threads in ways that were not seen in the initial

execution of the application, potentially leading to incorrect extrapolations.

Checkpoint-based methodologies, such as BarrierPoint, necessitate prior application
analysis to determine workload phases. However, these phases are input-dependent
and are reusable only when the application and corresponding libraries exhibit consis-

tent behavior. We address the problem of workload imbalance among the threads (a

3.4 Experimental Setup 41

heterogeneous workload) by keeping per-thread information intact while clustering the
individual regions. Like other checkpoint-based methodologies, we also assume that
the hardware configuration is known up-front. This configuration is free from any run-
time-dependent configuration changes or unexpected events that trigger a configuration
change while the application is running. An example of a dynamic event is thermal
throttling resulting in a dynamic voltage and frequency scaling (DVFS) event, which
can affect the application performance and is runtime- and hardware-dependent. Due to
the microarchitecture-dependent behavior of vectorized code (SIMD instructions), the
application profile and identified clusters may vary across different microarchitectures.
To address this, SIMD instructions may need to be treated as continuous instruction

sets within the BBV.

3.4 Experimental Setup

In this section, we describe the setup on which we conducted our experiments to evaluate

our generic multi-threaded sampling methodology.

3.4.1 Simulation Infrastructure

In this work, we use Sniper multicore simulation infrastructure [14] (version 7.4) with
modifications to support PC-based simulation region specification. We configured Sniper
to model a multicore out-of-order processor resembling the Intel Gainestown microarchi-
tecture using an 8 or 16-core processor model to simulate 8 or 16-threaded (respectively)

applications. The simulated system characteristics that we use are detailed in Table 3.1.

42 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

Table 3.1: The primary characteristics of the simulated system.

Component Features

Processor 8 & 16 cores, Gainestown-like microarch.
Core 2.66 GHz, 128 entry ROB

Branch predictor Pentium M

L1-T cache 32K, 4-way, LRU

L1-D cache 32K, 8-way, LRU

L2 cache 256K, 8-way, LRU

L3 cache 8M, 16-way, LRU

Table 3.2: SPEC CPU2017 speed application attributes. F=Fortran, KLOC=thousand
lines of code. From [1]

Application Lang. KLOC Application Area
603.bwaves F 1 Explosion modeling
607.cactuBSSN F, C++ 257 Physics: relativity
619.1bm C 1 Fluid dynamics
621.wrf F, C 991 Weather forecasting
627.cam4 F, C 407 Atmosphere modeling
628.pop2 F, C 338 Wide-scale ocean modeling
638.imagick C 259 Image manipulation
644.nab C 24 Molecular dynamics
649.fotonik3d F 14 Comp. Electromagnetics
654.roms F 210 Regional ocean modeling

3.4.2 Workloads

In order to evaluate the proposed methodology, we consider the SPEC CPU2017 [117]
benchmark suite. SPEC CPU2017 is available in two different versions depending on
the evaluation purpose: rate and speed [118]. The rate version is used to estimate the
throughput of the underlying system whereas the speed version is used to estimate the
runtime of the benchmark on the system. Unlike prior versions of SPEC benchmarks,
CPU2017 includes a set of synchronizing multi-threaded programs that share memory
consisting of OpenMP-compatible multi-threaded applications. We use the speed version
of SPEC CPU2017 with train inputs and eight threads (See Table 3.2 for application
descriptions) for our evaluation. The train input set is used so as to keep the full

program simulation time to a reasonable length. As the detailed simulation of the full

3.4 Experimental Setup 43

SPEC CPU2017 applications with ref inputs is not practical, computing the sampling
error is also not feasible. Therefore, we utilize the ref inputs to estimate the potential
speedup of the methodology in the chapter. The benchmarks we use include OpenMP

directives, with a summary of the primitives used described in (Table 3.3).

Table 3.3: SPEC CPU2017 speed synchronization primitives used. stad=static for,
dyn4d=dynamic for, bar=barrier, ma=master, si=single, red=reduction, at=atomic,
Ick=lock.

Application stad dynd bar ma si red at Ick
603.bwaves Y Y Y
607.cactuBSSN Y Y Y Y Y
619.1bm Y

621.wrf Y Y

627.cam4 Y Y Y Y

628.pop2 Y Y Y

638.imagick Y Y Y Y Y
644.nab Y Y Y Y
649.fotonik3d Y

654.roms Y

All SPEC CPU2017 workloads except 657.xz_s runs are 8-threaded. 657.xz_s.2 runs

with 4-threads whereas 657.xz_s.1 runs as a single-threaded application.

All the benchmarks in the SPEC CPU2017 benchmark suite are compiled using the Intel
compiler toolchain (Intel Parallel Studio XE, version 2019 Update 2) with optimizations
enabled (-O2) and debug information available for binary to source-level mapping, and

built for the 64-bit x86 instruction-set architecture.

We also use NAS Parallel Benchmarks (NPB) [119, 120] version 3.3 with OpenMP based
parallelization [121] that use class C inputs. We evaluate all benchmarks in the suite
with both 8 and 16 threads, but do not evaluate the npb-dc (data cube) benchmark
because of the large amount of data generated by that application. These benchmarks
are compiled using GCC 5.5 for applications in C and GFortran for Fortran applications

with -O3 optimizations for the x86-64 architecture.

44 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

We consider both active and passive wait policies for thread synchronization of the
SPEC CPU2017 OpenMP applications. We use the passive OpenMP wait policy to
configure NPB benchmarks. In passive wait policy, the threads do not spin while waiting
for other threads. Meanwhile in the case of active wait policy, the threads remain active
and they consume processor cycles while waiting by executing spin-loops. The use of
(PC, count) region specification can accurately represent a region over multiple runs
even in the presence of spin-loops, which is not possible if the region specification is

based on global or per-thread instruction counts.

For each benchmark, we record the execution path of the whole application and keep it
as a pinball so that it can be replayed in both constrained and unconstrained mode later
on. We have developed Pintools [116] to generate BBVs of the regions which are fed to
Simpoint for clustering the regions to identify the representative regions. We also have
employed Pintools to restrict the forward progress of all the threads in a well balanced
way thereby avoiding the chances of recording a skewed trace because of CPU load
imbalances. The representative regions identified are simulated in parallel. We evaluate
the runtime accuracy of the chosen representatives by simulating in constrained and

unconstrained modes.

3.4.3 Constrained Execution Infrastructure

We use Intel’s PinPlay [77] infrastructure that provides tools to record and replay ar-
bitrary regions of a program execution. The recorder captures the execution of an
application in a set of files collectively called a pinball [3] which can later be replayed on
any machine since pinballs are portable. A pinball consists of a memory file (.text), the
architecture register values at the beginning of the execution region in per-thread regis-
ter files (.reg), a set of memory and register values in per-thread injection files (.sel),
and a subset of shared-memory dependencies among various threads in per-thread de-

pendency files (.race). A pinball once captured is self-contained, which means that

3.4 Experimental Setup 45

both the application binary and inputs are not needed during replay of the pinball.

The replayer loads the initial memory and register state and starts executing the restored
program region like a regularly loaded binary. System calls are skipped and their side-
effects are injected. Shared-memory access in all threads are monitored and the threads
are artificially delayed as needed to enforce the access order as recorded in the pinball.
Finally, the replay is ended gracefully when the exit condition is met. Since system calls

are skipped during replay, a pinball can be replayed across different operating systems.

3.4.4 DCFG and Basic Blocks

The Dynamic Control Flow Graph (DCFG) is created by executing the program via a
pin-tool enabled with the DCFG library [122, 123]. Internally, the pin-tool hooks the
control-flow instructions and records a count of each of the resulting edges throughout
the execution of the workload on a per-thread basis. At the end of the execution, fall-
through edges are created to ensure non-overlapping basic blocks. These basic blocks are
guaranteed to have only one entry and one exit point and not overlap with each other.
In this way, they differ from the basic block structures in Pin, which do not have these
guarantees. The resulting basic blocks and the edges that connect them thus create
a connected graph. From this graph, routine boundaries are identified based on call
edges and heuristics to handle non-standard routines that are sometimes found in non-
compiled code. Inside the sub-graph of each routine, the immediate dominators of each
node are found. Loops are then identified using the immediate dominator relationships.

The graph, including the identified routines and loops are recorded.

3.4.5 Unconstrained Replay

PinPlay’s replayer enforces determinism among the threads by injecting recorded system
call side-effects and enforcing the recorded shared memory access thread order. We use

this mode when analyzing the workload (collecting BBVs and DCFGs to be used in the

46 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

clustering phase), to ensure different steps of the profiling methodology have a consistent
view of the program’s execution flow (as recorded during the initial whole-program
recording). However, during performance simulation, we want the timing model to
control thread progress and synchronization, not PinPlay as this can introduce artificial

thread stalls?.

3.4.6 Synchronization Handling

OpenMP active runs, enabled by setting the environment variable OMP_ WAIT _POL-
ICY to ACTIVE [125], have threads busy-waiting at user-level (as opposed to using fu-
tex() in the passive runs). We replay a pinball that was recorded earlier for reproducible
analysis for the generation of BBVs. If we directly use the recording, we encounter
the busy-waiting code that was originally executed by the application. However, the
busy-waiting code can differ if the application is executed another time with different
conditions. While busy-waiting consumes processor cycles, they do not contribute to the
real work done by the program. Therefore, we ignore busy-waiting during BBV profil-
ing, yet include it during simulation. Identifying busy-waiting code automatically [126]
can be a challenge and is yet another research problem. In our methodology, we ignore
the entire code from the relevant synchronization library (libiomp5.so in our case).
Note that this idea can easily be extended to other compilers and threading libraries.
For example, in the case of applications using pthread synchronization, we can ignore
the code from the libpthread library. The filtered instruction count is up to 40% (for

657.xz_s.2) fewer than the original instruction count for the active runs.

'See [124] for a methodology that uses constrained replay during multi-threaded performance simu-
lation, and which can, in limited cases, work around the artificial stalls.

3.5 Evaluation 47

3.5 Evaluation

In this section, we present the evaluation results of LoopPoint methodology. We analyse
the effect of various model parameters that make up the methodology. We also evaluate

the accuracy and the speedup achieved using LoopPoint.

3.5.1 Accuracy

We show the accuracy of LoopPoint methodology by comparing the predicted runtime
and the actual runtime of the application. The predicted runtime is calculated by con-
sidering the performance of all the representative regions as mentioned in Section 3.3.7.
The representative regions are augmented with a warmup region so that the microar-
chitectural state is warmed when the detailed region starts simulating. The prediction
error of our methodology is the percentage difference in the simulation performance of
the whole application and the extrapolated performance making use of the performance

of all the representative regions identified for the application.

3.5.1.1 Constrained and unconstrained simulations

The LoopPoint methodology is tested for applications using the active and passive
wait policies, and the simulation results are given here. Synchronizing multi-threaded
applications with active wait policy uses spinloops to synchronize the threads. Sam-
pling such an application can be considered a difficult problem to solve. We ignore the
instructions that contribute to spin-loops during BBV generation and clustering phases

as described in Section 3.4.6.

We perform binary-driven unconstrained simulations of the whole application as well as
the representatives to measure the performance. In order to mark the region bound-
aries using (PC, count) correctly, we need to keep spin-loops away from being the region

boundaries, as mentioned earlier. We limit the region boundaries to be from the appli-

48 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

cation code and not from any of the library code. Here, we make an assumption that

the synchronization code can only be present in the libraries.

The region checkpoints are generated as pinballs which can be used for constrained sim-
ulation. We assume a large enough warmup region added to the representative region
while generating the pinball checkpoint. However, using constrained simulation intro-
duces artificial thread delays and is therefore not reliable for performance extrapolation.
There are several ways to simulate these pinball checkpoints in an unconstrained way.
One such method is to convert them to ELF binaries, called ELFies, as discussed in a
prior work [47]. In this chapter, however, we are not evaluating ELFies. Instead, we
consider the region boundaries specified as (PC, count) to perform unconstrained sim-
ulation using the application binaries by providing perfect warmup before the start of
detailed simulation. One caveat that we want to mention is that not all region bound-
aries specified using (PC, count) can provide stable regions. For instance, applications
can have certain code blocks that are selectively executed with respect to the underlying
microarchitecture. Such code blocks or PCs cannot serve as stable (PC, count) region
boundaries. We assume that the users can choose the appropriate stable regions and
that, while straightforward to accomplish in an automated way, we leave that analysis

to future work.

Results when simulating constrained simulation can be misleading and can lead to high
errors. For example, we observe a runtime error for 657.xz_s.2 of up to 19.6% while
simulating in a constrained environment. One of the reasons that using constrained
simulation infrastructure can result in high error rates is that the simulation itself does
not properly mimic the real application run. Instead, the application tries to replicate the
behavior that was recorded previously on a specific machine. For instance, constrained
execution forces spin-loops to be replayed, even though this would not occur in a real

execution. This introduces high error for applications, like 657 .xz_s.2, that have fewer

3.5 Evaluation 49

synchronization points compared to other applications in the SPEC CPU2017 benchmark

suite and, therefore, can see high variability from run to run.

The runtime prediction results (Figure 3.5a) using the unconstrained simulation of ac-
tive applications yield an average absolute error of just 2.33%, whereas that of passive
applications is 2.23%. These error rates are comparable to previous sampling method-

ologies [34].

The looppoints identified are representative of the application across microarchitectural
configurations. Our up-front analysis is solely based on architecture-level details, not
microarchitectural settings or simulation details. Figure 3.5b shows the error in predict-
ing the runtime of the same applications while simulated for an inorder core instead of
the out-of-order Gainestown-like core while keeping all other simulation parameters the
default as in Table 3.1. The graph clearly shows that looppoints can be portable across

microarchitectures.

active I passive active I passive

Abs. Runtime Error%

S = N W kA LN
Abs. Runtime Error%

S = N W kA LN

\’b\\\\\\\'\;\\\’\, \’»\\\\\\\’1’\\\’\,

o T S s & o7 & o B U T ST S o 5
P S BT S & A 0 AT

< éi & %%iwé‘\gs & QQQ & w«?w S @5‘0&% ‘;\ay 4\‘? < ‘b@: & ‘A’i\?@@ & Qo&@&b\@’w& &ga S 4‘?
S T 'f° S St e 6 oot S P S ST @ e
S F & © & &P & N

N S N g
§
(a) Gainestown core (b) Inorder core

Figure 3.5: The runtime prediction errors of SPEC CPU2017 applications (train in-
puts) using active and passive wait policies that use eight threads for unconstrained
simulation. The y-axis represents the percent error in predicting the runtime of each of
the applications along the x-axis.

50 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

3.5.1.2 Varying the number of threads

We show that LoopPoint supports varying the number of application threads. Figure 3.6
shows the error rates while predicting the runtime of the NPB benchmarks. The ap-
plications are evaluated using eight and 16 threads. Note that the applications using a
different number of threads need to be profiled separately, as discussed in Section 3.3.
We observe that the average absolute error obtained is 2.87% for 8-threaded applications,

while for the 16-threaded applications, it is as low as 1.78%.

8cores HEE 16 cores

v

IS

Abs. Runtime Error%
S v

bt cg ep ft is Iu mg sp ua

Figure 3.6: The runtime prediction results of the NPB benchmarks that use 8 and
16 threads. The applications use a passive wait policy and class C inputs. The y-axis
represents the error percentage in predicting the runtime of each of the applications on
the x-axis.

3.5.1.3 Comparison of other metrics

Figure 3.7 shows the performance prediction of several metrics while simulated on an
unconstrained environment for applications using active and passive wait policies.
LoopPoint can determine microarchitectural metrics like the number of cycles (Fig-
ure 3.7a), branch miss rate or MPKI (Figure 3.7b), the miss rates or MPKI of different
components in the memory hierarchy (Figure 3.7¢c), etc. In Figure 3.7b and Figure 3.7c,
we show the absolute differences in the metrics predicted, rather than the percentage
error in prediction, because those metrics have small absolute values and a small dif-
ference can result in a high percentage error. Previous research [24, 34] has presented

differences in a similar manner.

3.5 Evaluation 51

4 W active B passive © Twmm active N passive

Abs. Cycles Error%
L R T NV e N |

T T s e e T e et e T s BTN ?\%s\ ?\ AN
%4@ q’@ §®\§) éo‘&b“éo° \g,@ AP {b@ & % &\& 6‘ Q “° %0\ @ A 6,\+
n;e‘“,,;o@ R &'@@\Q&Q\(& X3 @%‘? @ Q %{b@ R b\% & q,,\ qﬂ b} @o &
T T O s
S SRS &y et &
Q ‘o
(a) Number of Cycles (b) Branch MPKI

[active Bl passive

\’»_\.\\\\\\’b\\\w

?-so? b? c,,/ v\,/ /\)/
w&"g@” FaFar
< ‘&@ AS e ©
& ¢

(c) L2 MPKI

Figure 3.7: The prediction errors of various metrics for SPEC CPU2017 benchmarks
using LoopPoint. The benchmarks use active and passive wait policies with train inputs
and eight threads and are simulated in realistic unconstrained mode.

3.5.2 Speedup

We consider speedup in two different ways: theoretical speedup and actual speedup.
Theoretical speedup is the reduction in the number of instructions (ignoring the instruc-
tions that contribute to spinloops) to be simulated in detail when using the LoopPoint
methodology. We also define the actual speedup as the reduction in the simulated run-

time using LoopPoint with respect to the simulated runtime of the whole application.

Serial speedup is the speedup achieved when all the representatives are simulated back-

to-back. It is the overall reduction in work given the serial execution of both the full and

52 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

reduced workload. Parallel speedup assumes sufficient parallel resources and evaluates

the speedup given the execution of all regions in parallel.

Serial Parallel

103 I Actual [Theoretical [Actual M Theoretical
20102 4
E 10
153
153
=%
n

1
10 1

P H D DDD DD DD D>
PP E AL
& b‘.o & <Q ‘oc;\ ‘gg\

Figure 3.8: A comparison of theoretical and actual speedups achieved by LoopPoint.
The workload used is SPEC CPU2017 applications (active wait policy) using train inputs.

LoopPoint BarrierPoint
B Serial [Parallel [0 Serial M Parallel

Figure 3.9: LoopPoint and BarrierPoint theoretical speedup for SPEC CPU2017 ap-
plications (passive wait policy) using ref inputs.

In Figures 3.8 and 3.9, we see both the serial and parallel speedups for these applications.
We obtain a maximum speedup of 801x for the applications with train inputs and
31,253 x for the applications with ref inputs. The average serial speedup for applications
using train inputs and ref inputs are respectively 9x and 244x whereas the average

parallel speedup for the applications are 303x and 11,587 respectively for train and

3.5 Evaluation 53

ref inputs. This implies that a significant reduction of simulation resources is now
possible using the LoopPoint methodology, where simulations that would take months

to complete can now be finished in hours.

In Figure 3.9, we compare the theoretical simulation speedup using LoopPoint and Bar-
rierPoint for the benchmarks using ref inputs. Note that we do not plot the actual
speedup values using the ref inputs. We first validate our methodology with train
inputs, and by extension, we analyze and simulate ref input representatives to estimate
the performance of the larger application with confidence. Unfortunately, it is not pos-
sible to validate the error rates for applications with ref inputs because the full runs

take too long to simulate (a few months to years, as shown in Figure 3.1).

We observe that LoopPoint consistently achieves good speedup whereas BarrerPoint lags
behind for a number of applications. LoopPoint is able to reduce the application into
representative regions that can finish the simulation in a reasonable time. Additionally,
with the BarrierPoint methodology, there is no guarantee on the size of a representative
region. For example, the 8-threaded 638.imagick_s.1 benchmark has a very large
inter-barrier region (93.06 B instructions) that is comparable to the size of the entire
application (93.35B instructions), defeating the purpose of sampling. However, there
are a few applications for which BarrierPoint outperforms LoopPoint. Those applications
have a large number of barriers, and the inter-barrier regions are typically smaller than
the LoopPoint regions. BarrierPoint is unsuitable to evaluate both of the 657.xz_s
applications as they do not contain barriers at all. Overall, a hybrid approach can be
chosen to speed up smaller applications, but LoopPoint provides the first methodology to
allow for generic sampling of applications that results both in a high simulation speedup

and accuracy.

We also show the speedup achieved using NPB applications in Figure 3.10. LoopPoint

achieves good speedups while the applications are evaluated for eight threads as well as

54 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

16 threads. The maximum parallel speedup achieved while evaluating the 8-threaded
applications is 2,503 x with an average of 1,031x, whereas, for the 16-threaded applica-
tions, the maximum speedup achieved is 1,498 x and an average of 606x. Do note that
NPB applications are less complex and more repetitive in nature than SPEC CPU2017
applications. Therefore, the error rates are lower, and the speedups achieved are larger

when compared to the train inputs of the SPEC CPU2017 suite.

8 Core 16 Core
B Scrial W Parallel o Serial =W Parallel

bt cg ep ft is Iu mg sp ua

Figure 3.10: A comparison of actual speedups achieved by LoopPoint when the appli-
cations use 8 and 16 cores. Speedups are listed for the NPB suite using the C input set
and a passive wait policy.

3.6 Related Work

Before architects build new hardware designs, it is extremely useful to predict the hard-
ware design’s power, performance, and area (cost). Existing circuit-design tools are
able to simulate complex, modern applications on large, multi-core systems, but at the
cost of significant simulation time that can be intractable (requiring months to years of

simulation time for the SPEC CPU2017 benchmarks).

While there have been many attempts to solve this problem, previous works were unable
to provide a combination of three things for multi-threaded workloads: (1) choosing accu-

rate representatives without detailed simulation, (2) demonstrating simulation speedup

3.6 Related Work 55

based on application representatives, not on overall application runtime and (3) allowing
the simulation of hardware designs that might not yet have analytical models. Our pro-
posal addresses all these concerns through the determination of application parallelism,

clustering, and the extrapolating of the results based on this information.

Sampled Simulation Methodologies. Sampled simulation methodologies applicable
to single-threaded applications [2, 20, 26, 27] and multi-threaded applications [30, 32,
33, 34, 43, 52, 79] are discussed in Chapter 2.

Analytical Modeling. There has recently been some progress on the development
of a completely analytical model for single-threaded [127] [128] and multi-threaded [85]
workloads. One major drawback of analytical models is the inability to estimate the
performance of next-generation hardware designs. New processor, cache, and memory

techniques without analytical models will not be able to use these methodologies.

Constrained Simulation. Multi-threaded checkpoints were used [124] for constrained
simulation. Their goal was to estimate the relative performance analysis of regions-of-
interest across multiple micro-architectures. They describe a mechanism for speedup
computation in the presence of artificial stalls added by the constrained replay of check-
points during simulation. There could be cases where the speedup computation is incon-
clusive. We support unconstrained simulation as well as constrained simulation and also
provide an absolute performance extrapolation methodology. For relative, cross-micro-
architectural performance analysis, unconstrained simulation is desirable as it need not

have to deal with artificial stalls.

Handling Busy-waiting. The problem of busy-waiting is mentioned in [77] although
in the context of multi-process programs using Message Passing Interface (MPI). The
work focuses on simulating a specific single-threaded process from multiple processes in
an MPI program and uses the selective logging feature of PinPlay to exclude the busy

waiting code from consideration, both in the profiling and simulation phases.

56 LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications

Workload Characterization. There are different works that study the time-varying
runtime behavior of standard benchmarks. Wu et al. [68] study the phase behavior of
SPEC CPU2017 workloads. Moreover, the work identifies the single-threaded simulation
points using SimPoint methodology and correlates them with the phase behavior. Nair
et al. [129] study the phase behavior of SPEC CPU2006 and SPEC CPU2000 using Sim-
Point methodology. The work demonstrates that SimPoint yields similar CPI prediction

results for both application suites, suggesting similar phase behavior.

3.7 Conclusion

The need to understand larger, more complex multi-core processors continues to increase.
This becomes even more critical as the multi-core processors (and the serial code) tend to
be the bottleneck in highly parallel applications. General-purpose applications are found
on embedded devices, mobile phones, and back-end data center servers. While platforms

may differ in their demands, accurately understanding the applications remains crucial.

Simulation solutions alone are insufficient because of the significant slowdown (10,000
or more [6]) seen when simulating applications with industrial-quality simulators. Simu-
lation solutions today require alternatives like sampling to reduce the workloads to real-
istic simulation times. However, current sampling solutions either target single-threaded

workloads or are only applicable to specific workload types.

In this work, we present a generic multi-threaded sampling methodology, one that con-
siders the inherent parallelism of the application and allows for the automatic reduction
of workloads to sizes that are on the order of the representatives of the workloads them-
selves. We demonstrate how our classification methodology automatically partitions the
workload into representatives and allows us to predict the performance of the workloads

at hand with high accuracy.

Chapter

Viper: Utilizing Hierarchical Program

Structure to Accelerate Multi-core Simulation

You shall know the truth and the truth shall make you mad.

— Aldous Huxley

Workload sampling techniques typically rely on fixed-length intervals for analysis, which can
often be out of sync with the periodicity of program execution. Since an applications phase
behavior is strongly correlated to the code it executes, it can exhibit a hierarchy of phase
behaviors that can be observed at various interval lengths, rendering conventional sampling
techniques inadequate. We propose Viper, which leverages the hierarchical structure of
program execution in order to achieve better sampling accuracy and smaller regions, which

enables faster RTL simulations.

4.1 Introduction

As we approach the limits of technology scaling, there is a growing emphasis on efficient
and high-performance processor designs. Exploring and evaluating the design space of

these next-generation architectures is an essential part of this research. However, the

Alen Sabu and Changxi Liu contributed equally to this research.

58 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

traditional dependence on extremely time-consuming microarchitectural simulations for
large, realistic workloads proves impractical in addressing this challenge. For multi-
threaded workloads, this issue is further exacerbated by the complex interactions be-
tween multiple threads and the synchronization techniques employed to achieve scalable
performance. One solution to address this issue is sampled simulation, which selects a
representative subset of regions to simulate in detail and interpolates the performance of
the entire application based on this. Prior works [2, 8, 20, 33, 34, 130] have demonstrated
that, due to the repetitive behavior of workloads, sampling can often reduce the simula-

tion time by orders of magnitude while preserving the original program characteristics.

SimPoint [20] reduces the simulation time by leveraging the application’s phase behav-
ior for single-threaded workloads. It does so by splitting the application into fized-size
regions, clustering them based on their execution behavior, and then simulating a rep-
resentative element from each cluster in detail to extrapolate the performance of the
entire application. However, a major drawback of this method is that it uses fixed-
size regions for analysis, which do not often align with the actual periodicity [19] of
program execution. Simpoint 3.0 [131] introduces variable length regions but does not
address application periodicity. Moreover, since an applications phase behavior [22, 132]
is strongly correlated to the code it executes, it can exhibit a hierarchy of phase behav-
iors that can be observed at different interval lengths [32]. Consequently, a single fixed
region size cannot effectively capture the full spectrum of phase behaviors and often

leads to suboptimal phase classification [25].

Later works, such as BarrierPoint [34], TaskPoint [44], and LoopPoint [8], address this
shortcoming by utilizing the program structures and constructs within the application
code to split the application into a series of independently analyzable regions to build
a representative sample. Unfortunately, however, both BarrierPoint and TaskPoint

only apply to specific classes of applications. BarrierPoint targets applications that use

4.1 Introduction 59

global barriers for synchronization, whereas TaskPoint targets task-based applications.
While LoopPoint applies to generic multi-threaded applications, the regions it selects
do not necessarily align with the application’s phase behavior. Moreover, all these tech-
niques use large region sizes (/=100 million instructions or more per thread), suitable
for microarchitecture-level simulations (which take a few hours) but not for RTL-level
simulations, which may take weeks to months for completion. In addition, no previous
methodology provides a solution to detect small regions needed for RTL-level simulation,
as they would typically result in aliasing [32], leading to unpredictable results. In this
work, we propose a solution to solve both of these issues to achieve high performance

and accuracy.

The goal of this work is to address the generic sampling problem by selecting repre-
sentative regions that align with the application phases for simulation. Utilizing the
innate program structures instead of fixed-length intervals allows for flexible region sizes
that are more likely to be aligned with the application periodicity, thereby reducing the
chances of aliasing [32]. To do this, we present a novel methodology, Viper, that enables
fast and efficient analysis prior to sampled simulation. In short, we make the following

contributions to this work:

e We propose a novel methodology, Viper, that goes beyond prior state-of-the-art
sampled simulation techniques to allow for fine-grained region selection and accu-

rate performance reconstruction.

e We present a methodology that meets the requirements for RTL simulations for
accurate performance estimations. We show this by performing experiments on
microarchitecture-level and RTL-level simulators, enabling the detailed evaluation

of large benchmarks.

e We provide an extensive evaluation of Viper and demonstrate best-in-class accu-

racy (average sampling error of just 1.32%) and speedup of up to 2,710x, with an

60 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

average of 358x for the train input set of SPEC CPU2017 benchmarks. We also
explore the accuracy and performance trade-offs of Viper in comparison with prior

works.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the relevant
background and the challenges involved in the simulation of multi-threaded applications.
Section 4.3 presents the Viper methodology in detail. We then discuss the experimental
infrastructure in Section 4.4, followed by an extensive evaluation of Viper in Section 4.5
showcasing the applicability of the proposed methodology and conclude the chapter in

Section 4.6.

4.2 Background and Motivation

In this section, we present the background to understand the key features of sampled
simulation. We also discuss the challenges in simulating large workloads and how the

existing sampling methodologies are insufficient to address them.

4.2.1 Program Sampling

Sampling is the process of selecting a minimal subset or a sample from a population to
represent the entire population. The attributes or characteristics of the population are
estimated using the selected sample. We employ this technique to reduce the simulation
time of large workloads by simulating a representative sample from the entire program
execution. Prior works [2, 20] split an application into a series of execution slices and
cluster these slices with similar execution features into groups. These techniques demon-
strate high performance by simulating selected representative slices from each group to

represent the entire cluster of software slices.

Single-threaded sampling is largely considered to be a solved problem, whereas multi-

threaded sampling has been a long-standing problem due to the complexity of the work-

4.2 Background and Motivation 61

load behavior: threads that sleep, synchronize, or are being delayed in spin-loops, among
other issues. Alameldeen et al. [73] demonstrated the limitations of non-determinism
with multi-threaded workloads and demonstrated that IPC can be a poor performance

indicator [31], leading to inaccurate estimation of speedup or run time.

While initial works on multi-threaded sampling [79] focused on handling applications
with uncorrelated thread behaviors, subsequent research [32, 33| considered time as the
sampling unit that applies to synchronizing multi-threaded workloads. However, a major
drawback of this approach is that the whole application needs to be simulated sequen-
tially (i.e., it cannot be parallelized), and thus, the maximum attainable simulation
speedup is limited by the number of instructions in the whole application. Techniques
like BarrierPoint [34] and LoopPoint [8] consider application barriers and loops, respec-
tively, to define a unit-of-work [31]. BarrierPoint works on inter-barrier regions that can
be so large that it is infeasible to simulate them, limiting scalability. LoopPoint divides
the application into similarly sized regions enclosed within loop entries, ensuring size
limits. However, the regions may not align with application phases. While LoopPoint
regions are large enough to ensure accuracy and prevent aliasing, they are often too long

for RTL-level simulation.

4.2.2 Checkpointing Techniques

Checkpointing is a widely used technique to save the state of a simulation at a particular
point in time, which can then be restored later, allowing for further simulation or de-
bugging. Checkpointing is often used to parallelize simulation as well as to improve per-
formance by reducing the amount of time that needs to be spent re-simulating portions
of an application that have already been executed. For example, Checkpoint/Restore In
Userspace (CRIU) [133] is a well-known checkpointing mechanism on Linux. CRIU has
been integrated with major container engines like docker [134]. In addition, gem5 [6, 135]

uses its own checkpointing format that is useful to create microarchitecture-level snap-

62 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

shots of simulation that can be restored later. For x86 systems, the PinPlay infras-
tructure [77] supports storing the application state as architectural checkpoints, called
Pinballs, which can be replayed on PinPlay-enabled tools and simulators. Recent works
on executable checkpoints, like ELFies [47], are promising in terms of usability and
portability, as it is supported on popular microarchitecture simulators like gem5 [6] and

Sniper [14].

4.2.3 Microarchitectural State Warmup

Modern processors employ various techniques to improve performance, such as branch
prediction, caching, and speculative execution. These techniques can have a signifi-
cant impact on the workload execution run time. While simulating the key parts of an
application, it is important to rebuild or warm up the microarchitectural state of the
system. This ensures that subsequent simulations or performance measurements accu-
rately reflect the behavior of the processor. Methodologies like LoopPoint [8] rely on
simulating a large region right before the start of the simulation region to warm up the
microarchitectural state, while SMARTS [2] or time-based sampling techniques [32, 33]
enable functional warming during the entire simulation. TurboSMARTS [29] uses a
microarchitecture-level checkpointing mechanism to handle warmup that captures and
stores the functionally warmed system state before each simulation region. Checkpoint-
based warmup techniques require a large amount of storage. Moreover, it may not
always be suitable for microarchitecture design-space exploration that runs experiments
altering the memory hierarchy configuration, like cache sizes or the number of cache lev-
els, because it would invalidate the checkpoint for those regions, requiring new memory

checkpoints for each cache configuration.

4.3 The Viper Methodology 63

4.2.4 The Quest for Advanced and Efficient Sampling

With the widening gap between simulator performance and the processors they model,
running a cycle-accurate full-system simulation of large designs can be extremely time-
consuming. Current sampling solutions are primarily targeted for microarchitecture-level
simulations. Some recent works [48] attempted to adapt these solutions for RTL-level
simulations on Verilator [49] using smaller region sizes aiming to improve simulation
efficiency, which, however, resulted in accuracy that is typically not acceptable. The
result is that it is currently infeasible to evaluate the performance of large workloads
on the RTL level. Recent works [136, 137, 138] addressed the problem of accelerating
RTL simulation by leveraging techniques like batch processing, task-level dataflow ex-
ecution, low-level parallelism, and selective execution. These orthogonal techniques to
speed up simulation may not scale well for very large workloads. In addition, while
FPGA simulation infrastructures, such as Diablo [139] or FireSim [50], offer a faster
alternative for simulation, FPGAs are specialized devices with inherent limitations in
terms of memory capacity and logic capacity. This means that it is often not possible
to fit large, realistic processor models on FPGAs. This highlights the need for devel-
oping specialized workload sampling methodologies that can be flexibly applied to both
microarchitecture-level and RTL-level simulations. These methodologies should support
finer region granularities that align with the dynamic phase behavior exhibited by the
application. By tailoring the sampling approach to capture the specific characteristics
and phases of the workload, more accurate and efficient sampled simulations can be

performed.

4.3 The Viper Methodology

In this section, we describe the details of our proposed sampled simulation methodology,

Viper (depicted in Figure 4.1). Viper consists of four main steps: (i) Pre-profile Analysis

64 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

! |
! . I
i Region heck P l
I Structure . Checkpoint || g | |
{| Analysis » Profiling/ » Generation :‘: uArch-Level Ji
: Clustering b !
ESEmmmmm) CEREEREEEAEES CEEUUE | 1| RTL-Level ||

el

Analysis Simulation

Figure 4.1: The workflow of Viper showing region identification, clustering, and simu-
lation. The hierarchical structure of an application is used to identify regions. Sampled
simulation is performed based on the clustering information of the regions. The simu-
lation can be performed on various kinds of simulators depending on the level of detail
required.

which marks the region boundaries at which we split the application, (ii) Region Profil-
ing, where the profiling information in the form of feature vectors is collected for each
region, (iii) Clustering, which groups together regions with similar execution behavior
based on the profiling information, and (iv) Simulation, where each application region is
simulated either in Detailed Mode or Fast-forward Mode based on the clusters formed.
The full application performance is reconstructed from the performance of each region.

In the subsequent subsections, we provide details on how each of these stages operates.

4.3.1 Exploring the Hierarchical Structure of Program Execution

Multi-threaded applications typically execute in a hierarchical flow, exhibiting different
cyclic behavior patterns at varying interval lengths. These repeating patterns, often
referred to as phases, are strongly correlated to the code executed by the application [18,
26, 32]. Thus, by analyzing the inherent program structures in an application’s code,
one can effectively capture the variations in its phase behavior. In Viper, we utilize this
principle to identify phase markers [26] — the points within a program that corresponds
to change in the application’s phase behavior. Phase markers can be used to split the

application into a series of independently analyzable regions.

There are several kinds of program constructs in a parallel multi-threaded code region,

4.3 The Viper Methodology 65

such as barriers and loops, which can serve as potential phase markers of the application.
Choosing barrier counts or loop counts over instruction counts to represent work can

accurately demarcate multi-threaded regions over several runs.

o Barriers: Multi-threaded applications include single-threaded and multi-threaded
code regions, with thread synchronization at boundaries using barriers that can be
detected by compiler-generated instructions or functions to mark new code regions
in machine code. In OpenMP-enabled applications, the GCC compiler generates

the _omp_fn identifier that can be used to detect barriers.

e Loops: Typically, generic multi-threaded applications consist of various levels
of nested loops. In our analysis, we use the application’s dynamic control-flow
graph (DCFG) [123] to identify the loops in the outermost level of the code region
as task loops and the remaining as inner loops or ordinary loops. The DCFG is
utilized to identify loop headers, and for each loop, information about their outer
loops and associated subroutines is then collected. This helps to determine whether
a loop is the outermost one in the current subroutine and if the current subroutine

is the outermost in the given multi-threaded region.

After identifying potential phase markers in the application, we prioritize them for use as
region boundaries. Barriers receive the highest priority due to their natural alignment
of threads. Prior studies [34] support this, highlighting that partitioning at barrier
boundaries prevents aliasing issues and increases accuracy. Next, task loops within a
code region receive the next highest priority, marking boundaries between parallel tasks.
Lastly, inner loops or ordinary loops are considered for finer granularity, albeit with lower
priority, as ordinary loops typically do not act as phase markers in large applications.
We then select a subset of these potential markers as region boundaries, considering their
priorities. We also ensure that the resulting region sizes are suitable for analysis, meeting

both a minimum (d,,;, = 10,000,000) instruction threshold to capture variations in

66 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

M; (@) Mi44 (b) M4

L)

Program Start Smin

Time

5max

Figure 4.2: The selection of region boundaries (or markers) in an application using
Viper. Marker M; signifies the beginning of the current region with expected region
lengths to be between 6, and &4, instructions. M, is finally identified in accordance
with case (a) or (b) (described in section 4.3.1), which marks the end of the current
region.

phase behavior and avoid aliasing issues [14] and a maximum (J,,4, = 100,000, 000)

threshold for efficient simulation in a reasonable amount of time.

Region Boundaries

Once the list of potential phase markers is identified, the next step is to collect the
highest-priority phase marker from every 7' (7" ~ 1,000,000) instructions. From this
highest-priority list, we further select a subset of phase markers to serve as the region
boundaries, subject to the constraints that the resulting region sizes approximately fall
within the range of [dmin, dmax| instructions as illustrated in Figure 4.2. This is done
by employing a greedy algorithm that selects only the highest priority potential phase
marker available beyond an interval of d,,, instructions but within the next 4, in-
structions as the next region boundary (Figure 4.2a). If no such marker exists, the first
potential phase marker encountered is selected as the next region boundary, regard-
less of its priority (Figure 4.2b). Region boundaries are represented as triplets: (Image,
PCofset, Count), denoting the object/library, instruction address offset from the Image’s

base address, and the address’s count.

Figure 4.3 shows the classification of all the markers identified by Viper in SPEC
CPU2017 applications, along with the chosen markers that serve as the region bound-

aries. We observe that applications like 638.imagick_s.1, 657.xz_s.1, and 657.xz_-

4.3 The Viper Methodology 67

Potential Markers Selected Markers
I Barrier WM Task loop Inner loop I Barrier WS Task loop Inner loop
100
S
< 80
@
-E 60
E]
E 40
S
(5]
2 20
&
0
R IV C Y N S ST S
s & %Gﬁ Qﬁo& SIS rzﬁlo& ST A7 47
SRS N R ARSI AR T Gl
@'5 bgo & o o,‘@ ©
N N &

Figure 4.3: The percentage distribution of the type of markers (barriers, task loops,
and inner loops) identified in the 8-threaded SPEC CPU2017 benchmarks using train
inputs. Potential Markers denote all the available markers in the application, while
Selected Markers signify the markers that serve as the boundaries of regions.

s.2 have a few or no barriers. Therefore, most of the selected markers are ordinary
loops that serve as region boundaries. On the other hand, Viper selects as many
barrier-bounded regions as possible, as observed in cases such as 607.cactuBSSN_s.1,

621.wrf_s.1, 644.nab_s.1, 654.roms_s.1, etc.

4.3.2 Region Profiling

Accurately capturing the execution behavior of a multi-threaded code region can be
complex as threads synchronize at different points using various synchronization prim-
itives, and the execution pattern of each thread may vary across multiple runs due to
differences in memory access patterns [73]. In Viper, we achieve this by using basic
block vectors or BBVs as described in prior works [8, 20, 34]. A BBV is the execution
fingerprint of a particular interval represented using basic blocks and their counts. Bar-
rierPoint [34] showed that using LRU stack distance vectors (LDVs) along with BBVs
can result in better clustering results. An LDV represents a fingerprint of the LRU-stack
distance vector for a particular interval, which helps distinguish the regions that execute
the same code but have different memory access patterns. We combine BBVs and LDVs

on a per-thread level for each region to form per-thread signature vectors or SVs [34].

68 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

In order to represent a multi-threaded region, we concatenate the per-thread SVs to
form a multi-threaded SV, which captures the amount of parallelism among the threads.
The multi-threaded SVs are used for clustering to determine the similarity among the

identified regions. We collect all the signature vectors using a high-level emulator.

4.3.3 Determining the Region Similarity

Once the application regions are identified and profiled, the next step is to determine
the regions with similar execution characteristics in order to group them together and
determine representative regions from among them. This is done based on the profiling
information collected for each region which consists of multi-threaded SVs derived from
the BBVs and LDVs of all threads, which are projected down to a smaller, fixed dimen-
sion. In our experiments, we use 1024 dimensions which could result in higher sampling
accuracy and is a good trade-off with respect to the performance. The resulting SVs are
then clustered using the k-means [113] clustering algorithm to group similar regions. We

use the SimPoint [20] infrastructure to perform the clustering.

4.3.4 Fast and Accurate Fast-Forwarding

To speed up the simulation, representative regions of the application identified in the
clustering stage are simulated in detail, whereas all the other regions are fast-forwarded.
Note that this is applicable only for microarchitecture-level simulators, and for RTL-
level simulators, we create simulation checkpoints as discussed in Section 4.3.6. During
the fast-forwarding phase, we ensure that all of the application threads make similar
forward progress in time at regular intervals. This is particularly important because
both the functional and timing simulations are disabled during this phase, which can

lead to thread orderings that would not typically occur.

4.3 The Viper Methodology 69

4.3.5 The Warmup Challenge

One of the major challenges in sampled simulation is to build an accurate microarchi-
tectural state before the start of every region to be simulated in detail. It is essential to
choose a method that is flexible to support different cache configurations and can quickly
build the right state, as this can significantly impact the overall speedup achieved. In
this work, we choose the memory timestamp record (MTR) [5] warmup technique that
can quickly build the cache state at run time. From our experiments, we observed that
the harmonic mean of the slowdown due to MTR reconstruction is just 7.97% for SPEC
CPU2017 benchmarks using train inputs. We implement MTR to collect the cache line
information accessed by each Load and Store instruction during simulation, ordered in
LRU fashion per set. The requests are then injected into the cache in the right order to
rebuild the appropriate cache state before the simulation. We focus explicitly on cache
warming in simulation, as smaller structures like prefetchers tend to warm up rapidly.
For our RTL-level simulations, we simulate a warmup region right before the start of

detailed performance measurements of the simulation region.

4.3.6 Generating Simulation Checkpoints

Checkpointing is a widely used technique to capture the system state as a checkpoint
and later restore it. We use the application binaries to guide the microarchitecture-level
simulations. In order to guide RTL simulations, we create RISC-V full-system check-
points using MINJIE infrastructure [48]. The checkpoints are restored later to simulate
them in parallel on the RTL implementation of XiangShan [48] RISC-V processor using

Verilator [49].

70 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

6.0<[M
Q4.0 v
T 2.0

%.0 0.1 02 03 0.2 05 0.6 0.7

Time (s)

(a) The aggregate IPC of the full run.

ool " ‘ ™)) %
%2 4.0

—

2.01

%

0.0 0.1 0.2 03 0.4 05 0.6 0.7
Time (s)

(b) The aggregate reconstructed IPC using Viper.

Figure 4.4: Plot (a) shows the aggregate IPC of the full run, and plot (b) shows the
reconstructed IPC of the 644 .nab_s.1 benchmark using Viper. This example shows the
benchmark running with test inputs using 8 threads. The shaded regions in the plot (b)
represent the regions simulated in detail.

4.3.7 Simulation of Representative Regions

The region that lies the closest to the cluster centroid is taken as the representative
of that cluster. We identify all the cluster representatives, and these regions are simu-
lated in parallel using the generated checkpoints. In order to show that the proposed
methodology works for both microarchitecture-level simulators and RTL-level simulators,
we perform our simulations on Sniper (microarchitecture-level) as well as on Verilator
(RTL-level). We use the MTR warmup technique to rebuild the right micro-architecture
state and inject it into the simulator before the detailed simulation, as discussed in Sec-
tion 4.3.5. The performance of the overall workload is estimated from the performance
obtained from the simulation of the representative regions. Figure 4.4 shows Viper’s IPC
reconstruction from representatives for the 644.nab_s.1 benchmark (SPEC CPU2017)

using test inputs.

4.4 Experimental Setup 71

4.4 Experimental Setup

In this section, we discuss the experimental setup to evaluate the Viper methodology.

We describe the workloads and the platform used to conduct the experiments.

4.4.1 Simulation Tools

We implemented the support for Viper on Sniper [14] version 7.4, which is configured
to model Intel’s Gainestown microarchitecture, which is the latest hardware-validated
microarchitecture available on Sniper. More details on the configuration used for the
simulation are shown in Table 4.1. We modified the front-end of Sniper to support Viper’s
region specification. However, we expect that implementing this region specification
support on other software simulators like gem5 [6, 135] or ZSim [93] is possible. For RTL-
level simulations, we use Verilator [49] to simulate the RISC-V processor XiangShan [48]
using the checkpoints generated using the MINJIE platform. In this work, we generate
the simulation checkpoints using NEMU [48]. The methodology is also applicable to

other RTL simulators (like VCS [94]) if corresponding checkpoints are generated.

Table 4.1: The configuration of Gainestown microarchitecture.

Component Parameters

Processor 8 cores, 2.66 GHz, 128-entry ROB
Branch predictor Pentium M, 8 cycles penalty
L1-1/D 32KB, 4/8 way, LRU

L2 cache 256KB, 8 way, LRU

L3 cache 8MB per core, 16 way, LRU

4.4.2 Benchmarks Used

SPEC CPU2017 benchmark suite [117] is a widely used collection of applications used
for computer architecture evaluation and exploration. The benchmarks are written in

C, C++, Fortran, or a combination of these programming languages. We use the multi-

72 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

om

HE Full RTL I Viper

1 year

o
4

1 month

N

=)

1 week

Sim. Wall Time (s)

o

=)

1 day

Figure 4.5: A comparison of the estimated wall time to simulate SPEC CPU2017
benchmarks using train inputs and 8 threads for the full simulation (Full RTL) and Viper.
We use the simulation rate of XiangShan on Verilator and assume parallel simulation of
all the representative simulation checkpoints.

threaded OpenMP-based subset of the SPEC CPU2017 benchmarks that are enabled for
multi-threaded execution. We use the speed version of these benchmarks configured to
use eight statically scheduled threads. Note that these are multi-threaded benchmarks
that synchronize and share memory. SPEC CPU2017 benchmarks use three different
inputs: test, train, and reference (ref). We configure the SPEC CPU2017 benchmarks
to use the train inputs for our evaluation. These benchmarks are compiled for x86-64
architecture using GCC 6.4.0 and gfortran with the -03 optimization compiler flag. The

multi-threaded benchmarks are configured to use passive OpenMP thread wait policy.

4.4.3 Analysis Tools

We use Intel’s Pin [116] to build the analysis and profiling tools (Pintools) that we use for
this methodology. We also utilize the Dynamic Control Flow Graph (DCFG) tool [123]
included in the Pin distribution to collect potential markers that are used to identify
regions. DCFG collects the trace information of the application, which can be utilized

by implementing a pintool to detect barriers and loops that can act as region markers.

4.5 Evaluation 73

4.5 Evaluation

In this section, we describe the experimental results of the proposed methodology. We

also present the key factors that affect the performance of the methodology.

4.5.1 Comparison with State-of-the-Art

We first show the estimated wall time of full RTL simulation and Viper using XiangShan
on Verilator. Then we evaluate the accuracy and performance of Viper using Sniper
and compare it with LoopPoint (Chapter 3), the state-of-the-art sampled simulation
methodology for multi-threaded applications [8]. We then conduct detailed studies on
how region length affects speedup and accuracy. We do not evaluate the accuracy of
Viper on XiangShan as full RTL simulation takes more than a year for SPEC CPU2017
benchmarks using train inputs. In our experiments, we calculate the average value by

taking the geometric mean of the values across all benchmarks.

RTL-level Simulation. Figure 4.5 shows the total time required to simulate SPEC
CPU 2017 benchmarks using Verilator. Unlike prior works, we observe that the sampling
efficiency is bounded by the largest region identified by the sampling methodology. Viper
could significantly reduce the simulation time of these large workloads from more than

a year to less than a week or even a day in some cases.

Accuracy. Viper achieves similar or better error rates as compared to prior multi-
threaded sampling methodologies like BarrierPoint or LoopPoint. To measure the sam-
pling accuracy of the proposed methodology, we compare the simulation runtimes T

obtained from the full simulation and Tsqmpe obtained from the sampled simulation.
|1 _ Tsample |

The absolute runtime prediction error A can be represented as A = T
full

Figure 4.6 shows a comparison of absolute run time prediction errors with Viper and

LoopPoint obtained for the 8-threaded SPEC CPU2017 benchmarks using train inputs.

74 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

0

HEl LoopPoint B Viper

(=}

Abs. Runtime Error%
N

Figure 4.6: A comparison of the absolute runtime prediction error for Viper and
LoopPoint. We use SPEC CPU2017 benchmarks that use train inputs and 8 threads.

Viper performs similarly to LoopPoint while achieving lower maximum and average
(1.32%) errors. The results validate that choosing regions that are aligned to application

phases, while potentially much smaller in length, can achieve better accuracies.

We evaluate the performance of Viper for 16 threads using the same set of SPEC
CPU2017 benchmarks along with train inputs (except for 657.xz_s.1 and 657.xz_-
s.2, which run only with one thread and four threads, respectively). For the rest of
the benchmarks, we observe an average absolute error in the run time of 1.79%. The
maximum error that we observe is 5.29% (for 603.bwaves_s.2), whereas the minimum

error is 0.01% (for 638.imagick_s.1).

Speedup. The speedup is the ratio of the wall time required for the full simulation to
that of the sampled simulation. We define serial speedup as the speedup achieved when
the samples are simulated sequentially, whereas parallel speedup is the speedup achieved

when the samples are simulated in parallel.

We compare the speedup of the proposed methodology with LoopPoint as shown in
Figure 4.7a (parallel speedup) and Figure 4.7b (serial speedup). Viper outperforms
LoopPoint in all but one case for parallel speedup, as shown in Figure 4.7a. We observe
that Viper samples fewer but larger loop-bounded regions compared to LoopPoint for

627.cam4_s.1 resulting in longer simulation times. This is because 627.cam4_s.1 has

4.5 Evaluation 75

N [oopPoint N Viper EEN [oopPoint BN Viper

Speedup

B e TP e AT e
FFTF I ST E TS FEES m& S F T2t E T
N S S R o o S N OIS R Sl © &
@"7 @5 gq,z o @‘b b?{@ o @a, @n, .r§‘ & @ @% & &
& © S
(a) Parallel Speedup (b) Serial Speedup

Figure 4.7: A speedup comparison of LoopPoint and Viper for the 8-threaded SPEC
CPU2017 benchmarks using train inputs.

I (0M BN 20M W 50M 100M

Abs. Runtime Error%

Figure 4.8: Runtime prediction error for 8-threaded SPEC CPU2017 benchmarks using
train inputs for different region sizes.

larger loops and unlike LoopPoint, Viper does not split applications at random loops.
In the case of serial simulations, Viper outperforms LoopPoint in most cases (9 out of
14) in Figure 4.7b. The maximum serial speedup achieved by the proposed methodology
is 6.23%x. The primary reason behind achieving more speedup is that the region size of
Viper corresponds to the phase boundaries of the application, unlike the fixed region

sizes in LoopPoint.

4.5.2 Varying Region Sizes

We use Viper methodology to illustrate the experimental results using different region
sizes to show their effect on error rates. We also show the importance of choosing regions

inherent to the application structure instead of fixed-size slices. We use Viper to select

76 Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation

L0 . 20M 50M 100M

10°

T T 8T eT 0T kT T it of uf ad

FEE S SIS GRS ST
S TR FTFF T C
NN - 6
(SR o8 3 R

§

Figure 4.9: The speedup achieved for 8-threaded SPEC CPU2017 benchmarks using
train inputs. Viper is used to identify regions of fixed sizes.

fixed-size regions of 10 million, 20 million, 50 million, and 100 million instructions.

We show the accuracy in predicting the run time of each of the benchmarks. As shown
in Figure 4.8, there is no correlation between the region sizes and accuracies. For ex-
ample, in the case of 628.pop2_s.1, 638.imagick_s.1, or 654.roms_s. 1, the error de-
creases with an increase in region size. However, larger region size does not always yield
better accuracy in some other cases. For example, benchmarks like 603.bwaves_s.1,
621.wrf_s.1 and 627.cam4_s.1 achieve their best accuracies when the region size is
around 50 million. We infer from the experiment that there is no general region size that
can be used for every application, which motivates us to choose application-dependent

regions.

The average error of Viper-100M (regions of size ~ 100M) is 0.74%, whereas that for
Viper is 1.32%. Although using a larger region size yields a slightly better average error,

Viper consistently achieves better accuracies for most benchmarks.

Speedup. As Figure 4.9 shows, the speedup is larger for smaller atomic region sizes in
most cases (although the errors can be higher). For smaller region sizes, clustering allows
there to be fewer instructions to be simulated in detail overall, which allows for a larger

speedup. However, in certain cases, the number of regions to be simulated in detail

4.6 Conclusion 77

can be much more when the region sizes are smaller. For example, 649.fotonik3d_s.1
achieves a smaller speedup at region size 20M when compared with that of region size
50M. Comparing Figure 4.7b with Figure 4.9, we observe that the speedup achieved

using Viper-100M is similar to that of LoopPoint.

4.6 Conclusion

In this work, we propose a novel sampled simulation methodology and infrastructure
called Viper that shows significant improvement in performance over the existing method-
ologies which is applicable to both microarchitecture-level and RTL-level simulators.
Viper is both a fast (358 x speedup on average) and an accurate (with an average error
of just 1.32%) simulation methodology as evaluated with the multi-threaded subset of
SPEC CPU2017 benchmarks using train inputs.

Chapter

Pac-Sim: Simulation of Multi-threaded
Workloads using Intelligent, Live Sampling

If you want to find the secrets of the universe, think in terms of

energy, frequency, and vibration.
— Nikola Tesla

Modern systems are becoming increasingly complex and dynamic. With the high level of
dynamic optimizations in these systems, it is crucial to simulate next-generation multi-core
processors in a way that can respond to system changes and accurately determine system
performance metrics. We propose Pac-Sim, a novel sampled simulation methodology that
overcomes the limitations of traditional approaches by enabling fast and accurate simulations
even in the presence of dynamic hardware and software behavior. This is achieved through

live sampling, eliminating the need for upfront workload analysis.

5.1 Introduction

Computer architecture research heavily relies on simulations for design space exploration.

However, microarchitectural simulation can become extremely time-consuming, particu-

Alen Sabu and Changxi Liu contributed equally to this research.

80 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

larly as the complexity of modern architectures has increased over time. This is especially
true in the post-Dennard era, where architectures are rapidly evolving to incorporate
complex dynamic optimization techniques at both the hardware and software levels to
improve system performance gains at runtime. Hardware-based dynamic techniques such
as dynamic cache reconfiguration [38, 39, 40], DVFS [35, 36, 37], TurboBoost [41] and
power management [140] techniques trigger optimizations based on dynamically identi-
fied hardware states (such as core frequency, cache reuse distance, etc.) to improve both
energy-efficiency and overall performance of the system. Similarly, runtime information
at the software level can be used to dynamically optimize code execution, to further en-
hance the system performance. Some of the recent efforts on software-based optimization
focus on dynamically scheduling tasks among threads [42, 141] to ensure efficient resource
utilization and employing just-in-time (JIT) compilation techniques [142, 143, 144, 145]
that generate high-performance instructions to optimize program execution online. How-
ever, since these techniques utilize dynamic system state information in order to deploy
optimizations at runtime, the execution behavior of an application (and, therefore, its
performance) may vary greatly across multiple executions. This inherent variability may
lead to an inaccurate performance evaluation when using existing simulation method-

ologies.

Conventionally, sampled simulation has served as a reliable and efficient technique to
accelerate the performance estimation of multi-threaded workloads. In order to achieve
these results, most prior works relied on either (i) profile-driven sampling [8, 20, 34] or
(ii) statistical sampling [2, 146]. Profile-driven sampled simulation methodologies such
as SimPoint [20], BarrierPoint [34], and LoopPoint [8] (Chapter 3) split the execution
of an application into a series of repeatable regions and cluster them based on their
execution features. A representative element from each cluster is then analyzed or sim-
ulated in order to extrapolate the performance of the entire application. However, these

methodologies incur a significant cost in terms of the preprocessing effort that is needed

5.1 Introduction 81

to identify representative regions. These costs include the time required to profile and
cluster the execution features of all application regions, along with the storage required.
While it has been previously argued that these costs are a one-time investment and will
be amortized over multiple runs, this argument does not necessarily hold for systems
that optimize code execution dynamically. In such cases, the program execution paths
followed by an application may vary considerably due to changes of hardware and soft-
ware parameters that are being optimized. Therefore, the profiling information collected
for one specific run would not necessarily extend to the program execution paths followed

in the subsequent runs.

On the other hand, methodologies such as SMARTS [2] and PCantorSim[146] rely on
statistical sampling techniques to speed up simulation-based performance measurements
while meeting a given error bound. Unlike profile-driven sampling, these methodologies
require minimal preprocessing and do not rely on the reproducibility of program exe-
cution paths. They are thus applicable to dynamically optimized systems. However,
the simulation speedups achieved using these techniques are considerably lower than the
profile-driven counterparts, and adjusting settings to achieve higher performance could

lead to high errors.

For the above-mentioned reasons, it becomes challenging to sample and simulate generic
multithreaded applications for dynamic hardware and software using existing methodolo-
gies. Architects need a simulation methodology that can dynamically adapt to changes in
the system at runtime while accurately estimating the application’s performance without
relying on the reproducibility of its execution. To this end, we propose Pac-Sim, a novel
sampled simulation methodology that can, at runtime, efficiently analyze and sample
the application to select the representative regions to be simulated in detail. The result

is a methodology that enables both fast and accurate performance evaluation without

82 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

the need for up-front analysis. We accomplish this by making use of an intelligent online
predictor and classifier that quickly and accurately decides whether the upcoming region

needs to be simulated in detail.
In short, we make the following contributions:

i. We propose Pac-Sim, a methodology that goes beyond prior sampled simulation
techniques to be the first to allow for dynamic hardware and software support.
The methodology requires no upfront analysis and relies on an online predictor for
sampling decisions enabling the fast analysis of co-designed workloads.

ii. We experimentally demonstrate that Pac-Sim consistently improves performance
in terms of speedup and accuracy over prior works that use offline profiling, as
Pac-Sim utilizes a lightweight but accurate online sampling technique.

iii. We provide an extensive evaluation of Pac-Sim using standard benchmarks to com-
pare against prior works and demonstrate best-in-class accuracy (average error of
1.63%). For the SPEC CPU2017 benchmarks (train inputs) running eight threads,
we show a maximum serial speedup of 123.32x (26.09x on average) and a maxi-
mum parallel speedup of 523.5x (210.3x on average).

iv. Finally, we showcase several case studies demonstrating that Pac-Sim is applicable
to a number of research scenarios, including (but not limited to) the investigation
of optimization techniques such as dynamically scheduled software and improving

research into dynamic hardware and hardware-software co-design.

The rest of the chapter is organized as follows. In Section 5.2, we discuss the relevant
background and the challenges involved in the simulation of dynamic applications on
modern architectures. Section 5.3 presents the Pac-Sim methodology in detail. We then

describe the experimental infrastructure in Section 5.4, followed by an extensive evalu-

We use the terms “online” and “offline” to distinguish between events that occur during and prior
to the simulation of an application, respectively.
Pac-Sim has been open-sourced and can be found at https://github.com/snipersim/snipersim.

https://github.com/snipersim/snipersim

5.2 Simulating Modern Architectures 83

Table 5.1: This table summarizes previously proposed sampled simulation method-
ologies for both single-threaded and multi-threaded applications. We categorize these
methodologies into two main groups: Profile-driven and Statistical. The table also iden-
tifies the Analysis Type used by each methodology. Notably, some methodologies require
an upfront analysis or profiling phase to extract application-specific characteristics. Ad-
ditionally, the table indicates which methodologies are amenable to parallel simulation,
which determines the maximum speedup of the methodology. The field Warmup shows
the warmup technique used to reconstruct the microarchitectural state at the beginning
of the detailed simulation.

Analysis Parallel

Methodology Type Simulation

Warmup Applicability

g Simpoint [20] [Prev Region Single-threaded
% LiveSim [27] o Checkpoint ~ Single-threaded
?_) BarrierPoint [34] o Prev Region Multi-threaded
% TaskPoint [43] o Prev Region Task-based
&, LoopPoint [8] o Prev Region Multi-threaded
s SMARTS [2] O Functional Single-threaded
S SimFlex [30] L)) Checkpoint ~ Multi-program
S Time-Based
Cs . -_
& Sampling [32, 33] L)) Functional =~ Multi-threaded
Pac-Sim (this work) O Statistical ~ Multi-threaded

@ Ouline Profiling @© Offline Analysis O Offline Profiling

ation of Pac-Sim in Section 5.5 along with case studies to demonstrate the applicability
of the proposed methodology. Finally, we present the related work in Section 5.6 and

conclude the chapter in Section 5.7.

5.2 Simulating Modern Architectures

In this section, we provide the necessary background and prior work of sampled simula-
tion. Table 5.1 summarizes the widely used sampled simulation methodologies applicable
to CPU workloads. We also discuss the challenges in simulating modern workloads and

how the existing sampling methodologies are insufficient to address them.

Sampling Single-threaded Workloads. Sampling and workload reduction tech-

84 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

[0 Full W8 SMARTS-IM-10 £5XY SMARTS-1M-100 Il SMARTS-100K-10 ZZZZ Pac-Sim

50.0 115.2 177.7

10

10° T L day

Sim. Wall Time (s)

1 hour

Abs. Runtime Error%

Single Threaded Multi-threaded Single Threaded ~ Multi-threaded

Figure 5.1: Performance comparison of Pac-Sim with SMARTS [2] in different settings
for the SPEC benchmark 644 .nab_s. 1 (multi-threaded version uses 8 threads). The left
graph shows the comparison of runtime prediction errors using different sampled simu-
lation techniques, whereas the right graph shows the overall simulation time (running
on a parallel simulator). Both figures use lower-is-better metrics. SMARTS-A-B repeat-
edly switches between a single detailed simulation region of length A and B fast-forward
regions of length A.

niques are extensively utilized in computer architecture research for the purpose of
program characterization and to reduce simulation time. Sampling methodologies al-
low for the evaluation of a subset of the workload (a representative sample) in detail
that can be used to reconstruct the performance of the whole workload accurately. These
methodologies split the workload into different regions (or slices) based on predetermined
conditions in order to identify a representative sample. Prior works that explored CPU
workload sampling, like SimPoint [20] and SMARTS [2], tend to utilize fixed instruction
counts to determine regions. However, instruction count-based techniques could lead to
inconsistent and, therefore, invalid regions [31, 32, 73]. Some previous works [26, 123]
proposed software phase markers that identify procedure and loop boundaries that cor-

relate with phase changes to mark region boundaries instead of using fixed-sized regions.

Sampling Multi-threaded Workloads. SimFlex [30], which selects sampling units
for the simulation of server throughput workloads, does not appear to be generally exten-
sible to synchronizing multi-threaded workloads [32]. In the presence of synchronizing
threads, the application performance tends to vary more frequently [31, 32]. Sampling

methodologies such as SMARTS, SimFlex, and PCantorSim [146] rely on statistical

5.2 Simulating Modern Architectures 85

confidence, and adjusting settings to achieve higher performance could lead to high er-
rors, as shown in Figure 5.1. Time-based Sampling methodologies [32, 33| are the first
to address the problem of sampling synchronizing multi-threaded applications. These
methodologies are generally applicable and are suitable for the sampled simulation of
dynamic systems. However, Time-Based Sampling techniques are the slowest of all the
sampling techniques, and as a result, they are not practical for handling long-running
workloads. On the other hand, methodologies like BarrierPoint [34], TaskPoint [43], and
LoopPoint [8] select specific program constructs, such as barrier synchronization primi-
tives, task instances, and loops, respectively, to identify periodic behavior. This enables
the utilization of representative-sized regions for simulation, regardless of the program’s

length.

Feature Vectors. Profiling captures feature vectors to characterize the execution
behavior of an application across regions. Previous works have introduced several
microarchitecture-independent feature vectors, of which basic block vectors (BBVs) [20,
52] are the most widely used for performance characterization. Lau et al. [18] showed
a strong correlation between BBVs and region performance. Apart from BBVs, Shen
et al. [75] introduced LRU stack distance vectors (LDVs) [147] to summarize program
behavior for different regions. BarrierPoint [34] combines BBVs and LDVs into a sig-
nature vector (SV) in an attempt to represent more accurate features of multi-threaded
applications. Furthermore, Cotson [80] and Dynamic sampling [148] record statistics
such as the number of instructions executed, memory accesses, exceptions, bytes read or
written, etc., in order to plot the feature of a given region. Unfortunately, none of these

offline techniques can handle runtime optimizations that impact applications.

Overheads. Figure 5.2 illustrates the overhead of profiling data for LoopPoint (the
evaluation was performed using the LoopPoint tools [149]) methodology, indicating that

profile-driven methodologies incur significant overheads. When it is required to emulate

86 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

\W\\\\%\\%\\\

&S e/ >/ {w b‘/&/@e/ X ,‘_Jb/&/

& & X & X S
pé ioééb‘o\Q @,% %Q.& > \ox\%k&
NN © ©
Q S ‘o b&”
Q

Figure 5.2: The figure shows the resource utilization of a recent multi-threaded sampled
simulation technique, LoopPoint, for the SPEC CPU2017 benchmarks with the ref
inputs running eight OpenMP threads. The graph on the left shows the time required to
generate the profiling data (with checkpoints stored as pinballs [3]), whereas the graph
on the right shows the amount of storage required.

an architecture (for example, simulating ARM or RISC-V binaries on x86) during profil-
ing, it is necessary to resort to functional simulation to gather feature vectors, which can
be a time-consuming process. For instance, Sandberg et al. [78] demonstrated that it
took up to a month to generate profile data for SPEC CPU2006 benchmarks using simu-
lators like gem5. Prior works [8, 34] argue that this overhead is amortized over multiple
runs as the profiling results will be reused. However, this assertion does not hold in the
case of dynamic software and hardware where certain performance optimization deci-
sions are made using runtime information. For example, profiling for asymmetric cores,
such as the big. LITTLE cores is challenging as the operating frequency (and other dy-
namic hardware settings) of each core may not be known during profiling. Handling and
storing simulation checkpoints can be a daunting task. For instance, x86 architecture
checkpoints like ELFies [47] require a significant amount of storage space. Checkpoints
are often specific to a simulator or are tied to particular software/hardware configu-
rations. Microarchitectural checkpoints, requiring detailed hardware information like

cache states, are specific to the underlying hardware configuration.

Hardware and Software Dynamism. Researchers have introduced several dynamic

5.2 Simulating Modern Architectures 87

optimization techniques in hardware and software to achieve higher performance and
reduce power consumption. Techniques such as dynamic voltage and frequency scaling
(DVFS) and cache reconfiguration have been developed to adjust the hardware state
in response to executed instructions and active processes. Software optimization tech-
niques [142, 143, 144, 145] generate optimized code sequences at runtime. Additionally,
dynamic scheduling techniques [42] have been developed for multi-threaded applications.
In such cases, profile-driven sampling methodologies could show different performance
results for each execution. Methodologies such as trace-based simulations [150] or de-
terministic replay platforms [77] can guarantee consistent performance across multiple
executions but demand extensive profiling and large storage resources. Dynamic hard-
ware events, such as changes in core frequency, cache size, etc., can be unknown during
profiling. These events, when they are performance and power-dependent, become dif-
ficult to predict. Sherwood et al. [22] utilize a Markov predictor to predict the phase
behavior at runtime. Kihm et al. [151] propose switching to the detailed simulation
mode whenever the BBV variance exceeds a specified threshold. However, these meth-
ods have only been demonstrated with single-threaded applications as the phase behavior
of synchronizing multi-threaded applications varies frequently due to the interaction of

threads.
Requirements for Fast and Accurate Simulation.

Sampled simulation techniques that do not require upfront application analysis demon-
strate significant potential under dynamic software and hardware constraints. The inher-
ent variability of dynamic software behavior renders a single analysis insufficient, while
the unpredictable nature of modern hardware compromises the reliability of upfront
analysis. Additionally, the overhead due to the detailed application analysis becomes
a bottleneck for researchers engaged in fields like hardware-software co-design. There-

fore, it is imperative to leverage the best aspects of SimPoint-like and SMARTS-like

88 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

methodologies to achieve optimal simulation efficiency and accuracy. In our approach,
we integrate application analysis to guide sampled simulations, similar to SimPoint-like
methodologies, but without the need for upfront preprocessing, as seen in SMARTS-like
methodologies. In our work, we capture the dynamic information of the software and
hardware to make intelligent simulation decisions through online learning. Therefore,
our methodology is capable of handling hardware state changes, software dynamism, and
other factors influencing application performance. To achieve optimal performance with
online analysis, efficient and lightweight profiling, clustering, and warmup techniques are

essential.

In short, to quickly estimate the performance of multithreaded applications running
on next-generation hardware, a sampled simulation methodology is needed that can
dynamically adapt to changes in the system at runtime while accurately determining
relevant performance metrics. In Section 5.3, we will provide a thorough discussion of

these aspects and present our solution for fast and accurate simulation.

5.3 The Pac-Sim Methodology

In this section, we describe our proposal for an end-to-end sampled simulation method-
ology, Pac-Sim (see Figure 5.3), that supports both dynamic hardware and software
without requiring up-front workload analysis. Pac-Sim consists of five main stages:
Marker Detection, Region Profiling, Clustering, Prediction, and Simulation, which are
all carried out online. We have carefully designed each of these stages to minimize the
runtime overhead of the methodology while maintaining the sampling accuracy. An
important advantage of an online sampled simulation methodology like Pac-Sim is its
ability to accurately determine the execution profile of an application without relying on
the reproducibility of a program’s execution paths. This characteristic allows Pac-Sim

to accurately analyze and evaluate dynamic multi-threaded applications, accounting for

5.3 The Pac-Sim Methodology 89

any performance variability that may occur at runtime.

Pac-Sim operates by making use of the program structure and runtime hardware state
to identify the regions and their boundaries online. Each of these region boundaries or
markers defines the ending of the current region and the beginning of the next region
(Section 5.3.1). Once a marker is identified, Pac-Sim collects the profiling data and
simulation results of the current region (Section 5.3.2) and clusters it with the previously
identified regions to determine its cluster ID (Section 5.3.3). This cluster ID is added to
the program execution history, which is then used by the Predictor (Section 5.3.4) along
with the current marker and hardware state to predict whether the next region needs to

be simulated in detailed mode or fast-forward mode.

While we only demonstrate the effectiveness of Pac-Sim in estimating the performance of
synchronizing multi-threaded workloads in this work, our methodology has the potential
to support a variety of modern workload classes, such as cloud and mobile applications,
and could also be implemented for full system simulations. However, in such cases,
various factors must be taken into consideration, such as kernel and driver performance,
which can significantly impact the overall efficiency of the workloads. In this work, we
focus on user-space workloads, and enabling support for the above-mentioned use cases

is out-of-scope in this context, which we leave for future work.

5.3.1 Online Region Detection

Previous research [8, 26, 34] has shown that certain program constructs, such as barriers
or loops, can be utilized to characterize the phase behavior of multi-threaded applications
by splitting them into a series of individually analyzable regions. Since barriers represent
the global synchronization points within a program execution, all threads align at these
points, making them natural boundaries for application regions. However, relying solely

on barriers to split an application may not be ideal, especially in the presence of large

90 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

‘ Time
______ Region Marker M., "~ °°71
""" RegionR, | """ " RegionR,,
Simulation

Clustering
Predictor

Cluster ID ‘

Figure 5.3: The overall workflow of Pac-Sim methodology. At any given time, the
regions of a multi-threaded workload till R; are identified (as shown above). First, Pac-
Sim monitors the application code structure to determine an appropriate region marker
M1, which marks both the end of the region R; and the start of the region R;i;.
Next, the feature vector and simulation results for R; are collected, and a prediction
mechanism determines the simulation mode for region R;1;. Finally, region R;1; will
be simulated, either in detail or in fast-forward mode.

inter-barrier regions, as this can lead to low simulation speedups as representatives can
still be too large to complete detailed simulation in a reasonable amount of time. In
contrast, loops offer a finer level of granularity, allowing for greater control over the
size of regions. Typically, multi-threaded applications consist of both loops and barriers
in varying proportions. The online Marker Detector combines both of these program
constructs to effectively split multi-threaded applications into regions with sizes that are
well-suited for clustering while also avoiding aliasing [152]. The Marker Detector uses

the following approach in order to identify the barrier- and loop-based markers online:

Barriers. Typically, a multi-threaded region begins with a fork call, which spawns ad-
ditional worker threads and ends with a join call, which terminates the current thread
and synchronizes with other threads. A new region is triggered at events of thread
creation and termination, as regions with different active threads have different perfor-
mances. For multi-threaded programs that use the OpenMP library, special function
names are generated depending on the compiler used. We utilize this information in the

online Marker Detector to quickly and efficiently detect barriers with low overhead.

5.3 The Pac-Sim Methodology 91

Loops. Both loop and conditional statements use conditional branch instructions, with
the target address usually given as an offset from the instruction pointer. The key
difference between the two statements is that the offset of the branch instructions in a
loop statement is usually negative, whereas that in a conditional statement is positive.
In most cases, selecting conditional branches with negative offsets is sufficient to identify
loop markers [123]. In the rare case of exceptions, Pac-Sim predicts the simulation mode
of the next region to be detailed mode. We also make sure to disregard spinloops from

our analysis.

As an application executes, the Marker Detector identifies markers online, splitting the
application into multiple regions. While doing so, it also monitors the region sizes to
ensure they fall approximately within the bounds of §,,, and 0,4, instructions. A mini-
mum number of instructions, d.,in, is necessary to capture the frequent variations in the
multi-threaded program behavior and accurately cluster the obtained regions. When-
ever the Marker Detector chooses barrier-based markers as region boundaries, the size
of the region can be as small as d,,4, instructions but no larger than d,,,, instructions.
Otherwise, the Marker Detector chooses the first loop-based marker it encounters be-
yond e instructions as the next region boundary. For loop-bounded regions, it is
necessary to keep region sizes large enough to avoid aliasing [32]. In our experiments
with fixed region sizes of 10 million, 20 million, 50 million, and 100 million instructions,
the SPEC CPU2017 benchmarks showed average error rates of 6.9%, 3.3%, 1.8%, and
1.8%, respectively. We set the lower bound 6,,;, to be 20 million to ensure sampling

accuracy and the upper bound §,,4, to be 50 million for better performance.

Hardware State. The Marker Detector also monitors the hardware state of the simu-
lated system. If it detects changes, the current region is ended at the next marker so that
each region has a consistent hardware state. Once a marker is detected, the program

counter (PC) and the hardware state of the simulated system are collected and stored

92 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

corresponding to the marker. The collected hardware state includes the system param-
eters, like processor frequency, cache size/configuration, power management techniques,

etc., that can be configured during runtime.

5.3.2 Online Region Profiling

Conventionally, BBVs have been used to characterize the execution behavior of code
regions, as they have been shown to exhibit a strong correlation with the region’s perfor-
mance [18]. BBVs record the execution counts of each basic block (i.e., code blocks with
single entry and exit points) within a given code region. The number of dimensions for
a BBV depends on the number of basic blocks executed, which could range anywhere
from thousands to even millions for very large applications. This presents a major chal-
lenge for online analysis of BBVs as the time and effort required for this stage would
significantly increase as the vector dimensionality increases. SimPoint [20] uses random
linear projection [153] to overcome this problem. However, this method is not suitable
for our online algorithm as the matrix-vector multiplication operations involved could

introduce significant runtime overheads.

To overcome these issues, we propose a fast online BBV generation technique (illustrated
in Figure 5.4). Rather than creating a fixed-size BBV for each region, we use an online
projection technique to generate fixed-size vectors BBV/ for each basic block BB;, where
the elements of BBV, are computed by multiplying the instruction count of a basic
block with the hash results of its program counter (PC) value. We use the hash function
drand48(), which generates pseudo-random numbers for an integer value input. The
initial four dimensions of the online BBV are determined using the hash values utilizing
inputs PC, PC+1, PC+2, and PC+3, respectively. The values of the subsequent four
dimensions are generated using the output of the preceding four dimensions as inputs to
the hash function. We experimentally determined that using 16 dimensions adequately

captures the representation of a region using the online BBV. The resultant BBV

5.3 The Pac-Sim Methodology 93

Basic Block BB; BBV, BBV
PC, hash; (PC)x #insn
R iyl A IS U0 A R
beq t2, ox1200 hash,(PC)x #insn 5
hash,(PC) X #insn

d=Dimensionof BBV L— |

Figure 5.4: The figure shows the workflow of online BBV generation. Whenever a basic
block BB; is encountered, a corresponding execution fingerprint BBYV; is generated using
hash functions applied to the program counter of BB; and the number of instructions it
contains. hashy to hashg are d distinct hash functions, where d is the dimension of the
BBV. The BBV for each region is obtained by accumulating all BBV;s that belong to
the region.

vectors are then accumulated to obtain the per-thread BBV (BBV/ .) for the given

online

region, which can be represented as:

online

BBV, . = ZBBW = Z(BB%-MPM),

2

where the values of the elements in M,,,; are generated using hash functions as men-
tioned above. This BBV, . . for a region is analogous to the BBV utilized in SimPoint,
which is obtained through random linear projection. The projected down BBV used in

SimPoint, BBVO’f Flines 18 obtained from the dot product of the actual BBV of the region

and projection matrix Mp..;:

BB o/ffline = BBV - Mproj = Z (BBV; : Mproj)-

7

We then normalize these per-thread BBVs and concatenate them into a single global-
BBV vector to represent the software feature of a given multi-threaded code region.
In Pac-Sim, it is necessary to maintain the online BBV to capture the dynamic pro-
gram behavior. Using online BBVs to represent regions eliminates the need to perform

computationally intensive dimensionality reduction techniques during simulation.

94 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

5.3.3 Determining Region Similarity

Pac-Sim employs an online clustering mechanism to group regions with similar execution
behavior based on the feature vectors collected for each region in the online profiling
stage. The clustering, which is done at the end of simulating each region, is required
for the learning process of the Predictor. Prior works, like SimPoint [20], cluster feature
vectors using the k-means algorithm [113]. However, k-means uses an iterative refinement
technique that is computationally intensive, and therefore, a more efficient algorithm

might be better suited for online analysis.

In order to reduce this computational load and enable real-time clustering, we devise
an alternative technique for clustering feature vectors (i.e., global-BBVs) in Pac-Sim. In
our technique, we maintain two separate queues: (i) detailed queue and (ii) fast-forward
queue. The detailed queue includes the BBVs corresponding to the regions that have
been simulated in detail, while the fast-forward queue includes those corresponding to
the regions that have been fast-forwarded. When a new BBV is recorded, it is first
compared with the BBVs in the detailed queue. If its distance from any of these BBVs
is less than the specified threshold 6, then we return the cluster ID of the closest region.
If there is no region whose distance is less than 6, we repeat the same procedure with
the regions in fast-forward queue. If we still don’t find similar regions, we assign a
new cluster ID for the current region and insert it into the BBV queue corresponding
to its simulation mode. In our experiments, we set § = 0.05 to ensure a reasonable
simulation accuracy while maintaining high speedups. To further improve the efficiency
of our clustering technique, we incorporate the triangle inequality optimization [154] into
our algorithm, which can skip redundant BBV distance calculations. We use Euclidean

distance for all BBV distance calculations.

5.3 The Pac-Sim Methodology 95

Execution Timeline R

[Mo [, [M,] [ty | o,] v [[|

Matched Sequence Current Sequence 1.0
f—)%
%' 0.8
[Jafs]s]a]sa]s]s[>] &7
=]
Cluster IDs Predicted ID: 2 E:,’ 0.6
?25- M, M, : s
Sl Ml O . 1 = 0.4+
Al | L
9! | 3
: ool &
£l :
£ 3, @ @ 1 e
2 | Q\@%&.
&iTries Set | O OW G @F &

(a) (b)

Figure 5.5: The predictor utilizes the trie [4] data structure to quickly predict the
cluster ID of the next region by searching for a similar history with the same region
start marker M;. In this example, the cluster ID of the next region is predicted to be
2 since the prior region with the cluster ID of 2 has the same start marker My and the
longest matching sequence (3 — 3 — 2). Plot (b) shows the accuracy of the predictor
for different benchmark suites.

5.3.4 Prediction Mechanism

Pac-Sim employs a Predictor — an online prediction mechanism that leverages region
markers, execution history, and hardware state to predict the phase behavior of the next

region in an application and decide its simulation mode at runtime.

Region Markers. The Marker Detector identifies PC-based region markers that act as
the boundaries of the regions. In certain cases, using region markers to classify regions is
effective for applications where the same part of the code displays similar phase behavior,

as in the case of 619.1bm_s.1 and 644.nab_s.1 using train inputs.

Execution History. When executing the same part of the source code, differences in
memory access patterns, branching, etc., can result in varying phase behavior at runtime.
We, therefore, make use of execution history, which is a sequence of the cluster IDs of

prior regions, to predict these differences in the phase behavior among applications.

Hardware State. Pac-Sim takes into account the state of the simulated system, such

96 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Cluster ID
TR
"

"
i
i
i
i
i
i

o 2 4 6 8 10 12 14 16 18
Instructions Executed (in Billions)

Figure 5.6: The graph shows the regions identified using Pac-Sim for the NPB bench-
mark ft, grouped together with the respective cluster they belong to. The shaded
portion represents the regions that are simulated in detail.

as core frequency, while executing each region. Predictor predicts the next region to be
detailed mode if there are no prior similar regions with the same hardware state. The
Predictor decides the cluster ID of the next region by choosing the cluster ID of the
previous region with the same region marker and has the longest matching sequence.
For the regions that do not have a previous region with the same start marker or the
same history, Pac-Sim enables detailed execution for that region. Then it decides the
simulation mode of the next region by checking whether prior regions with cluster ID
and the current hardware state are simulated in detailed mode. This history is learned

online and is updated every time Pac-Sim finishes simulating a region.

To accelerate this stage for large application lengths, we further optimize our cluster-
ing algorithm to reduce its average search time complexity from O(n?) to O(n). This
is achieved by maintaining the execution history in a trie [4] data structure, with a
maximum depth of 16, which allows for more efficient search and insert operations. In
Pac-Sim, we utilize the trie data structure to maintain the execution history of the ap-
plication being simulated and quickly predict the cluster ID of the next region based on

this information.

Figure 5.5a illustrates the usage of tries to predict the cluster ID of the next region by
considering the example of a hypothetical execution sequence. Insert: The cluster 1D

of the current region is inserted into the trie. In Figure 5.5a, when the online cluster-

5.3 The Pac-Sim Methodology 97

ing of the fifth region is finished, we insert the current cluster ID 2 for both branches
corresponding to the three histories: 3, 3 — 3, and 2 — 3 — 3. Search: Once Insert
of the current region is completed, the cluster ID of the next region is predicted by
searching the trie for a matching cluster ID sequence. The search operation ends when
the sequence matches one of the leaf node paths. Note that two regions having the same

marker do not necessarily mean that the regions belong to the same cluster.

Figure 5.5b shows the average accuracies of the online predictor for the benchmarks
of SPEC CPU2017 and NPB are 94% and 85%, respectively, ensuring the sampling
accuracy and performance of Pac-Sim. The accuracy of the predictor is determined
by comparing the predicted cluster ID prior to simulating the region with the actual
cluster ID obtained through clustering after simulation. Figure 5.6 shows the results
of the Predictor in clustering different regions identified by Pac-Sim simulating the ft
benchmark from the NPB benchmark suite using eight threads. We observe that the
majority of regions from each cluster are simulated in detail (shaded portions). This is
in accordance with the learning phase of our algorithm where Pac-Sim works to establish

a comprehensive understanding of the phase behavior of the application.

5.3.5 Simulation by Application Reconstruction

Previously proposed multi-threaded sampling methodologies [8, 34] rely fully on offline
analysis to determine the regions that need to be simulated in detail. Pac-Sim assumes
no prior knowledge about the nature of the workload that it is about to simulate. In-
stead, it (a) samples regions online during the simulation and (b) uses the detailed
simulation results of previous regions to estimate the performance of the current fast-
forwarded region by applying the four different methods described below successively

until convergence is reached.

i. Use the detailed performance metrics of a region that belongs to the same cluster

98 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

and has the same start marker as the current region.
ii. Use the detailed performance metrics of a region that belongs to the same cluster.
iii. Use the performance of a region with the closest BBV (# = 1) and the same number
of active threads.
iv. Use the average performance of the regions that have the same number of active

threads.

We extrapolate the runtime 7, of a fast-forwarded region r using the region 7’ by T, =

T2 where T;. is the runtime of the previous region r’ identified above, and insn,
T

and insn,s are the maximum instruction counts among all threads for the regions r and

r’, respectively.

Runtime Hardware Events. Pac-Sim takes into account the state of the simulated
system while estimating the performance of the fast-forwarded region. As runtime hard-
ware events can happen at any time, we do not guarantee the regions that are divided
by those events to be large enough. In such cases, we estimate the performance of these
regions using the closest previous region with the same hardware state, as these regions
are too small to be clustered. Moreover, the impact of these regions on the overall

application performance is typically negligible as the regions are too short.

5.3.6 Sampled Simulation in Parallel

Pac-Sim is primarily targeted for runtime varying scenarios using live sampling. How-
ever, for statically scheduled multi-threaded applications, Pac-Sim can support sampled
simulation in parallel, similar to checkpoint-based mechanisms, to further speed up the
sampled simulation. The workflow of Pac-Sim for parallel simulation is shown in Fig-
ure 5.7. Previous methods, like LiveSim [27] and LoopPoint [8], require offline analysis
and store checkpoints for sampled simulation. A huge amount of storage is required for

these methods, as mentioned in Section 4.2. Pac-Sim starts in emulation mode, collect-

5.3 The Pac-Sim Methodology 99

Emulation and analysis

Workload /| Ry :: R, :...(:__Iii__::___________________J
fork

warmup

———— -

simulate | R, : "R

Figure 5.7: The workflow of Pac-Sim when the representative regions are simulated in
parallel. Pac-Sim starts in the emulation mode, collecting feature vectors and MTR [5]
warmup data online, and then predicts the simulation mode of the next region. For
regions predicted for detailed mode, Pac-Sim forks new processes to perform warmup
and detailed simulation.

ing feature vectors and warmup data online, and then predicts the simulation mode of
the next region. For regions predicted for detailed mode, Pac-Sim forks new processes,
which run in parallel, to perform warmup and detailed simulation. Pac-Sim reconstructs
the performance of the entire application once the whole application is emulated and

the simulation of all regions is completed.

5.3.7 Microarchitectural Warmup

One of the major challenges of sampled simulation is to choose the right warmup tech-
nique that can directly build up an accurate microarchitectural state prior to the de-
tailed simulation of a region. Methodologies like SMARTS [2] and time-based sampling
techniques [32, 33| keep functional warming enabled for the entire sampled simulation,
leading to large slowdowns. We find that the statistical warmup techniques [5, 88, 91, 92]
can reconstruct the accurate microarchitectural state of a simulated system online. We
choose the memory time-stamp record (MTR) [5] technique to be used with Pac-Sim.
MTR can rapidly collect memory reference patterns during the fast-forward mode and
reconstruct the cache state before switching to detailed simulation. In this work, we
limit the simulation infrastructure to explicit cache warming, as the smaller structures

tend to be warmed relatively quickly.

100 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

We employ a cache warmup strategy by populating the cache structures with the N most
recent unique memory accesses, where N represents the total number of cache lines being
simulated. We maintain a minimum region length of 20 million instructions to mitigate
the impact of smaller structures on sampling accuracy. While prior research explores
warming up various microarchitectural structures [86, 87], our experiments demonstrate
that focusing solely on last-level cache warmup is sufficient for high sampling accuracy.
Pac-Sim can be configured with other warmup techniques, but evaluating their effective-

ness is beyond the scope of this work.

5.4 Experimental Setup

In this section, we describe the experimental setup used to evaluate Pac-Sim. We be-
gin by providing the specifics of the simulation framework, comprising the simulator
used and details of the simulated architecture employed in our experiments. We then
describe the different workloads that are used to evaluate the performance of our method-
ology, including SPEC CPU2017 [117], PARSEC [155], and NAS Parallel Benchmarks
(NPB) [112] with different multi-threaded programming models, namely OpenMP [125]
and OmpSs [42]. The default parameters of Pac-Sim used in our experiments are listed
in Table 5.2.

Table 5.2: The default parameters of Pac-Sim used in our experiments.

Parameters Values

Min. Region Length (instructions) 20,000,000
Max. Region Length (instructions) 50,000,000
Dimensions of Online BBV 16
Max. Depth of Trie used in Predictor 16
Clustering Threshold 0.05

5.4 Experimental Setup 101

5.4.1 Simulation Tools

In this work, we use a modified version of the Sniper multi-core simulator [14, 156]
(version 7.4), which is updated to support loop-based and barrier-based region specifi-
cations in order to evaluate Pac-Sim. Sniper is a many-core simulator using high-level
abstract models and is widely used for architectural evaluation and design space explo-
ration. Note that our methodology does not utilize any features specific to the Sniper
simulator. Therefore, porting the methodology to other simulators, such as gem5 [6]
or ZSim [93], should be relatively straightforward. To demonstrate that Pac-Sim is in-
deed a microarchitecture-independent methodology, we experimentally evaluate it by
running simulations upon two different processor configurations that mimic the perfor-
mance/behavior of Intel’s Gainestown, Skylake [157], and Sunnycove [158] microarchi-
tectures using Sniper. The configuration details for each of these models are listed in
Table 5.3.

Table 5.3: The configuration parameters we used for Gainestown, Skylake, and Sun-
nycove microarchitectures on Sniper.

Component Gainestown Parameters Skylake Parameters Sunnycove Parameters
Processor 1, 8 cores 1, 8 cores 1, 8 cores

Core 2.66 GHz, 128-entry ROB 2.66 / 3.7 GHz, 224-entry ROB 3.60 GHz, 352-entry ROB
L1-I1/L1-D 32KB,4 /8 way, LRU 32 KB, 8 / 8 way, LRU 32 / 48 KB, 8 / 12 way, LRU
L2 cache 256 KB, 8 way, LRU 1 MB, 16 way, LRU 1.25 MB, 20 way, LRU

L3 cache 8 MB (shared), 16 way, LRU 22 MB (shared), 12 way, LRU 16 MB (shared), 16 way, LRU

To enable high-performance simulation, Pac-Sim intelligently switches among the three
simulation modes supported by Sniper, namely, fast-forward mode, cache-only mode, and
detailed simulation mode. The fast-forward mode is used to reach a particular point in an
application during simulation without enabling the performance models. The cache-only
mode performs the functional warming of the caches, whereas the detailed simulation

mode is the default simulation mode that enables the timing model for performance

Note that Gainestown is the latest microarchitecture available on Sniper simulator that has been
validated against hardware. We made modifications to the back-end of Sniper to support the contention
model and instruction latencies for Skylake and Sunnycove architectures.

102 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

estimation. For Pac-Sim, we capitalize on the split execution and timing model of
Sniper to fast-forward in the front-end of the simulator so that the simulation wall time

is further minimized.

Every time Pac-Sim switches from fast-forward to detailed simulation mode; the cache
state is reconstructed at the beginning of the region using the memory time-stamp
record (MTR) [5] technique. We implement MTR in Sniper to collect the cache line
information accessed by each Load and Store instruction during simulation, ordered in
LRU fashion per set, and then inject the requests into the cache in the correct order to

rebuild the appropriate cache state.

5.4.2 Benchmarks Used

To demonstrate the applicability of Pac-Sim, we experimentally evaluate the method-
ology using multiple benchmark suites such as (i) the SPEC CPU2017 benchmark
suite [117], (ii) the NAS Parallel Benchmarks (NPB) [112] version 3.4.2, and (iii) the
PARSEC [155] version 3.0 benchmark suite. Note that these are multi-threaded bench-

marks that synchronize frequently and share memory.

We configure these benchmarks to use two different multi-threaded programming mod-
els, namely OpenMP [125] and OmpSs [42]. OpenMP [125] provides a set of compiler
directives, library routines, and environment variables that help developers to parallelize
their code. On the other hand, OmpSs [42] extends OpenMP, and it is able to dynam-
ically manage and schedule tasks to maximize multi-threaded application performance.
We set up the multi-threaded benchmarks to use passive thread wait policy, meaning

that the threads will sleep while waiting for other threads at a synchronization point.

SPEC CPU2017 is a collection of benchmarks used for performance evaluation in com-

puter architecture research. In our experiments, we use the speed version of multi-

threaded SPEC CPU2017 benchmarks that are parallelized with OpenMP. The bench-

5.5 Evaluation 103

A Time-Based Sampling [l LoopPoint ZZZ Pac-Sim

&&&é@gﬂi%&.ﬂm&&

—_

Abs. Runtime Error%
S N BN ©

Figure 5.8: A comparison of the absolute runtime prediction error using different
methodologies, namely, Time-Based Sampling, LoopPoint, and Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. On average, Pac-Sim achieves better
accuracy compared to Time-Based Sampling and LoopPoint.

marks are compiled using GCC 6.4.0 and GFortran with the -03 compiler flag for x86-64
architecture. We configure these benchmarks to run with eight threads and evaluate
them using the train input set. NAS Parallel Benchmarks (NPB) [112] is another set of
benchmarks widely used to evaluate the performance of highly parallel systems in com-
puter architecture. The reference implementations of these benchmarks are available
in the two most commonly used programming models, i.e., MPI and OpenMP. In our
experiments, we use the OpenMP-based implementation with input class A and gener-
ate the binaries using icc compiler (with -02 flag) as part of the Intel oneAPI (version
2022.0.2) toolkit. We also present experimental evaluations of Pac-Sim using PARSEC,
which is another standard benchmark suite consisting of computationally intensive ap-
plications designed to facilitate the study of multi-core systems with shared memory.
PARSEC implementations are available in both OpenMP and OmpSs [159] versions. In

our experiments, we use both these versions with the simlarge input set.

5.5 Evaluation

In this section, we first present a comprehensive evaluation of Pac-Sim, comparing its

efficacy with the current state-of-the-art. Additionally, we provide experimental evi-

104 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

I LoopPoint 7z Pac-Sim Y Time-Based Sampling [l LoopPoint [ZZZZ Pac-Sim

(a) Parallel Speedup (b) Serial Speedup

Figure 5.9: The parallel and serial speedups achieved using Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using train inputs. For speedup calculations, the simulation
walltime corresponding to Pac-Sim includes both online analysis and simulation time,
whereas, for LoopPoint, we consider only the checkpoint simulation time, excluding the
time required for offline profiling and checkpoint generation. Pac-Sim outperforms both
Time-Based Sampling and LoopPoint in terms of speedup achieved. Note that Time-
Based Sampling techniques are not suitable for sampled simulation in parallel.

L2 MPKI abs. diff
SN S NEC N R=A ¥

— ESSS e

J— ESSSDY N J— ESSSSY
18

bt cg ep ft sp ua geomean

Figure 5.10: The absolute differences in predicting L2 cache misses per kilo instructions
(MPKI) using Pac-Sim as compared to the full detailed simulation. In this experiment,
we use the NPB benchmarks with class A inputs running eight threads. The geometric
mean of the absolute differences in predicting L2 MPKI is 0.23.

dence showing that Pac-Sim is indeed a hardware-independent methodology. Finally,
we present case studies that demonstrate the applicability and effectiveness of Pac-Sim
in estimating workload performance in dynamic, multi-threaded hardware and software
environments. Note that, throughout this chapter, the term runtime refers to the sim-
ulated runtime of the application, whereas the term wall-time refers to the actual time

taken by the simulator to finish the run.

Evaluation metrics. In order to evaluate the effectiveness of any simulation method-
ology, it is crucial to quantitatively measure its performance in terms of two critical

metrics: accuracy and speedup. In our experiments, we define these metrics in the fol-

5.5 Evaluation 105

Gainestown Skylake Sunnycove
I 8 threads [£2ZZ2 1 thread I 8 threads S 1 thread [8 threads 1 thread

Abs. Runtime Error%
S N RN O

(a) Accuracy

Gainestown Skylake Sunnycove
I 8 threads 77772 1 thread I 8 threads SNY 1 thread [8 threads 1 thread

?
?
7
.
%

A

NN

S Vzzzzzzz777)
AN

g
o
ac
)
-
Iz
=
3 8
(3
-
S
3
5

(b) Serial Speedup

Figure 5.11: The accuracy and serial speedup achieved for Pac-Sim methodology when
simulated using three different microarchitectures, namely, Gainestown, Skylake, and
Sunnycove, for NPB benchmarks with class A inputs running eight threads and one
thread.

lowing manner:

Accuracy: We assess the accuracy of our proposed methodology by comparing the sim-
ulation runtime obtained from the full simulation and the sampled simulation in terms
of absolute runtime prediction error Agme, which is defined as

Atime _ |Tfull; Tsample’
full

where T’y represents the simulation runtime obtained from the full run, and Tsgmpie
represents the simulation runtime extrapolated from the sampled simulation. It is im-
portant to note that in our evaluation, we use the runtime (execution time as inferred
from simulation) of the application as the performance metric to measure the accuracy of
sampling. This is because time-per-program is the gold-standard performance measure,

and IPC is not a valid performance metric for multi-threaded applications [31].

106 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Speedup: In our experiments, we calculate the speedup by taking the ratio of the wall-
clock time for the full simulation to that of the sampled simulation and the average
speedup by computing the geometric mean of the speedups across all benchmarks. Se-
rial speedup is defined as the speedup achieved when all representative regions are sim-
ulated sequentially, while parallel speedup is obtained when the representative regions

are simulated in parallel, assuming infinite resources.

5.5.1 Comparison with the State-of-the-Art

In this section, we evaluate the performance of Pac-Sim in comparison to the state-
of-the-art profile-driven sampled simulation methodology, LoopPoint [8]. While several
other profile-driven methodologies exist, LoopPoint provides the benefit of being appli-
cable across a variety of application and synchronization types. It has also been shown
to outperform other multithreaded sampled simulation methodologies (such as Barri-
erPoint) in terms of speedup and accuracy, thus serving as a strong baseline for our
evaluations. We also compare Pac-Sim with Time-Based Sampling [32, 33] techniques,
which repeatedly alternate between detailed simulation and fast-forwarding of regions.
For a fair comparison, we adopt Pac-Sim’s approach of injecting the warmup state at the
beginning of each detailed simulation region. We now report the results of our simula-
tion experiments evaluating and comparing the performance of these two methodologies

using the SPEC CPU2017 benchmarks.

Accuracy. Figure 5.8 shows a comparison of absolute runtime prediction errors for Pac-
Sim, Time-Based Sampling, and LoopPoint obtained for the 8-threaded SPEC CPU2017
benchmarks using train inputs. Our analysis reveals that, in most cases, Pac-Sim per-
forms comparably with LoopPoint in predicting the runtime of the applications, with the
individual errors differing by no more than 2 to 3%. The relatively higher errors for some
applications, such as 619.1bm_s.1, are because Pac-Sim relies on online extrapolation

to estimate application performance using the limited profile data that is available from

5.5 Evaluation 107

regions that have already been simulated. Whereas methodologies like LoopPoint rely
on offline profiling and, therefore, utilize the information about the whole application.
We also evaluate the accuracy of Pac-Sim to determine the L2 cache misses per kilo
instructions (MPKI), as shown in Figure 5.10. The final results show that the average
absolute difference of MPKI for all benchmarks evaluated is 0.23, demonstrating Pac-
Sim accurately extrapolates microarchitectural metrics of the whole application from the

selected samples.

Speedup. Figure 5.9 shows the speedup comparison of Pac-Sim, Time-Based Sam-
pling, and LoopPoint for the SPEC CPU2017 benchmarks using train inputs running
eight threads. Figure 5.9a shows the parallel speedup for which Pac-Sim outperforms
LoopPoint in most cases (7 out of 12 benchmarks). The primary reason for this is that
Pac-Sim uses smaller regions as compared to LoopPoint. Although Pac-Sim requires
emulation of the entire application, the online analysis overhead is minimized, and there-
fore, the average parallel speedup for SPEC CPU2017 benchmarks (train inputs) using

Pac-Sim is 210.3x, which is larger than that obtained for LoopPoint (150.97x).

Figure 5.9b shows the serial speedup, and we observe Pac-Sim outperforms LoopPoint
in most cases, attaining a maximum serial speedup of 123.32x. Specifically, Pac-Sim
outperforms LoopPoint by 1.8x and 1.4x for the serial and parallel speedup, respec-
tively. While the online analysis can introduce some runtime overheads, the performance
advantages of Pac-Sim seem to outweigh these overheads in most cases. We observe that
the performance of Pac-Sim surpasses that of Time-Based Sampling across all evaluated
benchmarks. This is because Pac-Sim selects regions for detailed simulation through
online learning, in contrast to Time-Based Sampling. Furthermore, the use of program
constructs like barriers and loops in Pac-Sim for region selection enables identifying
repetitive program behavior in multi-threaded workloads. However, there are some

cases where LoopPoint performs better than Pac-Sim, such as for 627.cam4_s.1 and

108 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

I Detailed Sim I Pac-Sim Pac-Sim (parallel)

1 year

1 month
1 week

Walltime (s)

1 day

Figure 5.12: A comparison of the estimated walltime for fully detailed simulation
and sampled simulation using the serial and parallel versions of Pac-Sim for 8-threaded
SPEC CPU2017 benchmarks using ref inputs. The estimated walltime includes the time
required for online analysis, warmup, and simulation.

628.pop2_s.1 benchmarks in Figure 5.9b. This is mainly because Pac-Sim uses a small
clustering threshold (0.05) for the online clustering in order to maintain higher accuracy,

compared with Time-Based sampling and LoopPoint.

Efficacy in Evaluating Realistic Workloads. The full detailed simulation of SPEC
CPU2017 benchmarks with reference inputs takes an extremely long time — about a
year on average using multi-core simulators like Sniper. Instead, we estimate their sim-
ulation walltime by considering the instruction count of the benchmark using reference
inputs along with the average simulation rate of the benchmark using train inputs. The
walltime of Pac-Sim includes the time required for online analysis and emulation of the
entire workload along with the time for detailed simulation of the representative re-
gions. Figure 5.12 shows that Pac-Sim takes less than a week, on average, to run the
entire application sequentially, while the parallel version of Pac-Sim takes about 1.8 days
on average. In experiments where the microarchitecture structures like cache size are
adjusted or when the application itself undergoes instruction-level modifications, it is
necessary to regenerate the checkpoints. In such cases, Pac-Sim is more appropriate as
LoopPoint takes 6.2 days on average (shown in Figure 5.2) to complete its preprocessing

before simulation.

5.5 Evaluation 109

Microarchitecture-agnostic sampling. In addition to achieving high accuracy and
speedups, Pac-Sim also provides the advantage of being a microarchitecture-independent
methodology. We experimentally demonstrate this by evaluating our methodology with
two different processor configurations, namely the Gainestown and Skylake microarchi-
tectures, for the NPB benchmarks that run using one thread and eight threads. The
accuracy and speedup numbers obtained in our experiments are plotted in Figure 5.11a
and Figure 5.11b, respectively. From Figure 5.11a, we can observe that the absolute
runtime errors estimated by Pac-Sim for all NPB applications are quite low (all under
8%) and are similar for both these processor configurations (differing by 5% at most).
Moreover, the speedups obtained for both configurations are similar for most bench-
marks, as observed in Figure 5.11b. Hence, the choice of a target microarchitecture for

evaluation does not affect the efficacy of Pac-Sim.

Wall-time Distribution. We show the time spent by Pac-Sim in different stages of
sampled simulation. Figure 5.13 shows the average time spent in the online analysis
stage for NPB (class A inputs) and SPEC CPU2017 (train inputs) benchmarks is 7.88%
and 11.20%, respectively. This is the result of the optimizations described in Section 4.3,
which are applied to the analysis part. Moreover, Pac-Sim spends 8.25% and 16.00%
of the execution time on warmup for NPB and SPEC CPU2017 benchmarks, respec-
tively. This is because Pac-Sim needs to reconstruct the memory access patterns at the
beginning of the detailed simulation of a region. Note that Pac-Sim reduces the time
spent in both profiling and analysis of the benchmarks significantly as compared to prior

profile-driven methodologies for sampled simulation.

Memory Overhead. The memory overhead of Pac-Sim is minimal (no disk access)
and allocated once per simulation. For the online analysis, Pac-Sim needs to record

the BBV information of the previously simulated regions. The space complexity of the

msn
online analysis is O (Jull), where insn g,y is the total dynamic instructions

region__length

110 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

I Detail Fast-forward [Warmup Analysis

SPEC.train
NPB.A
PARSEC.simlarge

0 20 40 60 80 100
Time Spent (%)

Figure 5.13: The graph shows the percentage of time that Pac-Sim spends at each phase
during the sampled simulation of each benchmark suite (average across all benchmarks).
The Analysis component includes online marker detection, region profiling, clustering,
and prediction.

executed by the application and region__length is the average length (size) of the regions
identified. The MTR warmup injection technique keeps counters for each cache line

accessed (num__cache_lines), and the space complexity is O(num__cache__lines).

5.5.2 Case Studies

We showcase the versatility of Pac-Sim through several compelling case studies. Firstly,
we demonstrate that our methodology remains agnostic to dynamic thread scheduling
decisions made during runtime, highlighting its robustness and adaptability. Next, we
provide examples of how Pac-Sim operates seamlessly in the presence of various runtime
hardware events, further cementing its reliability. Finally, we exhibit the applicability
of the proposed methodology in hardware-software co-design studies, showcasing its

potential to facilitate more efficient and effective design processes.

5.5.2.1 Dynamically Scheduled Software

The advent of multi-core and many-core architectures has necessitated the efficient par-
allel execution of dynamically scheduled multi-threaded applications to maximize system
performance. However, the non-determinism resulting from the execution of such ap-
plications on multi-core platforms often leads to notable performance variability across

multiple runs. This variability can be attributed to software-level factors such as dy-

5.5 Evaluation 111

namic job scheduling by the operating system, thread migration between cores, load

balancing optimizations, and contention for shared resources at runtime.

Table 5.4: Table shows the IPC of freqmine benchmark from the PARSEC benchmark
suite using the simlarge input for threads 0 through 7. Pac-Sim shows the details of
dynamically scheduled software whose IPC and thread mapping differ across two runs.

Thread ID | 0 1 2 3 4 5 6 7 | Agsr

IPCrun1 0.15 0.09 1.75 0.43 0.07 0.07 0.10 0.09 | 2.75
IPCryne | 0.15 0.09 1.76 0.07 0.44 0.07 0.09 0.10 | 2.76

Table 5.4 illustrates the thread-level differences in terms of instructions per cycle (IPC)
for two different runs of the OpenMP-parallelized freqmine application from the PAR-
SEC benchmark suite. There are variations in the per-thread IPCs between the two runs,
particularly for thread IDs 3 and 4. To investigate the impact of these variations on con-
ventionally used sampling techniques, we conducted two independent profiling runs of
fregmine using LoopPoint. The experimental results showed significant variability, with
14% of the regions clustered differently between runs. This presents a challenge for sam-
pled simulation, which relies on profiling data from a prior execution to guide simulation
in subsequent runs. Dynamically scheduled applications, by nature, have profiling data
that fluctuates across executions. To address this challenge caused by runtime variabil-
ity, Pac-Sim performs online profiling and simulation within the same run. This allows

Pac-Sim to capture any performance variations that might occur during execution.

To demonstrate the effectiveness of Pac-Sim in this regard, we now present an experimen-
tal study of dynamically scheduled multi-threaded versions of PARSEC with simlarge
inputs and NPB with class A inputs. While the per-thread behavior varies for dynami-
cally scheduled applications, the global execution time and global IPC remain consistent
across multiple runs. In Table 5.4, we observe that while there are some variations in
per-thread behavior, the aggregate IPCs across the two runs remain nearly unchanged.

Figure 5.14 demonstrates the average runtime prediction errors of Pac-Sim simulating

112 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

I OmpSs vzzz2 OpenMP

—_
w [=}

Abs. Runtime Error%
(=)

Figure 5.14: Figure shows the average error rates (from five different runs) and error
bars in predicting the runtime of dynamically scheduled benchmarks. We use PARSEC
benchmarks with the simlarge input using OmpSs and OpenMP, and NPB benchmarks
with class A inputs using OpenMP runtime.

dynamically scheduled multi-threaded applications. We run the benchmarks multiple
times in full detailed mode and using Pac-Sim. The errors are calculated by compar-
ing the runtime obtained using Pac-Sim with the average runtime obtained from the full
detailed simulations. The results show that Pac-Sim achieves a very low error in predict-
ing the runtime of dynamically scheduled software (3.81% on average). The benchmark,
fregmine, which shows the largest IPC variation (without spinloops) maintains an aver-
age error of 11.43%. Moreover, Pac-Sim demonstrates speedups of up to 43.96x (6.29x

on average) for all dynamically scheduled benchmarks.

5.5.2.2 Dynamic Hardware Events

Dynamic event-based hardware optimizations help improve performance gains and en-
ergy efficiency in modern architectures. DVFS [35, 36, 37| is one of the most widely
employed dynamic hardware event-based optimization techniques. It monitors core fre-
quencies and load variations in order to match the system power consumption with the
required level of performance by triggering voltage and frequency optimizations at run-
time. These optimizations may lead to a diverse range of dynamic hardware states (i.e.,
core frequency, power configurations) over a given run, consequently resulting in a signif-

icant degree of performance variability for a given workload across different executions.

5.5 Evaluation 113

Pac-Sim deals with this performance variability by monitoring the simulated hardware
events during execution. While prior sampled simulation methodologies can be modified
to support dynamic hardware events triggered only at region boundaries (to maintain
consistent hardware state within a region), Pac-Sim allows hardware events at any point
during the application execution. Each time an event occurs, Pac-Sim triggers a new
region to ensure hardware state consistency within that region. The predictor then
speculates the cluster ID of the next region and checks the execution history to determine
whether similar regions (i.e., regions with the same cluster ID and hardware state) were
previously encountered. If a match is found, the region is fast-forwarded; otherwise, a

detailed simulation is triggered.

We now present an experimental study demonstrating the effectiveness of Pac-Sim in
handling the variability caused by dynamic hardware events by specifically considering
the case of DVFS-optimized workloads. In our experiments, we evaluate the performance
of the benchmarks by comparing the results of Pac-Sim with the baseline while changing
the frequency at predetermined intervals; however, just like in actual DVFS-optimized
executions, the information on the frequency changes is not available to the simulator a
priori. In order to evaluate the performance of Pac-Sim, we consider a DVFS scenario in
which the processor frequency { switches among a fixed range of values, i.e., { € {1.33

GHz, 2.00 GHz, 2.66 GHz} as shown in Figure 5.15¢c.

For this scenario, we measure the aggregate giga/billion instructions per second (GIPS)
values obtained from both the full detailed simulation and Pac-Sim over the entire ex-
ecution. The findings of our experiment are presented in Figure 5.15. We observe that
the GIPS values obtained from both the full simulation (Figure 5.15a) and Pac-Sim
(Figure 5.15b) exhibit a great deal of similarity, indicating Pac-Sim’s effectiveness in
estimating the performance of a dynamically optimized workload with a high level of

accuracy. Furthermore, our findings reveal that Pac-Sim simulates only a small fraction

114 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

20
wn
el T T W Y
Ulo,

(a) Aggregate GIPS from full detail simulation

F1 e s

(b) Reconstructed GIPS using Pac-Sim

0 10 20 30 40 50 60 70
Instructions Executed (in Billions)

(c¢) CPU Frequency

Figure 5.15: The aggregate giga (billion) instructions per second (GIPS) of the full run
(a), reconstructed GIPS using Pac-Sim (b), and the varying CPU frequency for all CPUs
(c) 644.nab_s.1 benchmark with train inputs running 8 threads. The shaded regions
in (b) represent the regions simulated in detail. The figures share the same x-axis.

Full Detailed Sim Pac-Sim
B w/o SSE2 72 w/SSE2 I w/o SSE2 w/ SSE2

&

()

> 2.0
=15
<

£ 1.0
€05
£ 0.0

bt cg ep ft is Iu mg sp ua

Figure 5.16: The figure shows the absolute difference in performance (in terms of
runtime) for NPB benchmarks using class A inputs and 8 threads with (w/) and without
(w/0) SSE2 simulated in detailed mode and with Pac-Sim.

of the entire application in detail (depicted by shaded regions in Figure 5.15b). No-
tably, most of the detailed simulation occurs either at points of change in the phase
behavior of the application or hardware states. This demonstrates that Pac-Sim can use
this information to identify a minimal representative subset for applications using online

analysis.

5.5 Evaluation 115

5.5.2.3 Hardware-Software Co-design

Hardware-software co-design is an emerging field of study that optimizes the system per-
formance by concurrently designing the compiler and hardware components of a system
to exploit the synergy between the two. Prior works [160, 161, 162] have investigated
several directions in this context. To identify the most effective strategies, hardware-
software co-design research relies on fast and accurate architectural simulation method-
ologies to explore the design space efficiently. However, among existing methodologies,
the profile-driven methodologies [20, 34| incur significant profiling and preprocessing
costs, as shown in Figure 5.2, whereas the statistical sampling methodologies [2, 146]

(which do not rely on preprocessing) have low speedups.

Pac-Sim addresses these issues by sampling and analyzing the regions online. Thus,
it incurs no additional profiling cost if new compilers are used or new applications are
generated, enabling fast and efficient exploration of hardware-software co-design space.
To demonstrate the effectiveness of Pac-Sim in this regard, we now present a perfor-
mance evaluation study of the NPB benchmarks under different compiler optimization
techniques. We study the impact of SIMD (Single Instruction, Multiple Data) opti-
mizations on the generated binaries using both Pac-Sim and full detailed simulations.
SIMD-enabled processors are equipped with special-purpose registers that can simul-
taneously load multiple machine words and perform operations on them in parallel in
order to improve processor performance. For instance, the Streaming SIMD Extensions
2 (SSE2) instruction set uses 128-bit XMM registers to process packed data elements at

once.

In our experiments, we measure the performance improvement (in terms of runtime)
obtained by enabling SSE2 and compare it against the baseline. The results of our
simulations are presented in Figure 5.16. We observe that the average difference in

the performance improvements obtained from full detailed mode and Pac-Sim is 3.65%.

116 Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling

Specifically, Pac-Sim reveals the performance effects of SIMD instructions. For example,
some benchmarks achieve a significant speedup over the baseline as these applications
meet the icc vectorization criteria [163]. £t calculates a 3D fast Fourier transform, and
its innermost loop consists of multiply-add statements with contiguous memory accesses
and no data dependency. On the other hand, is, which uses the quick sort algorithm, is
hard to vectorize. The SIMD overheads resulting from register transfer costs exacerbate

the overall application performance.

5.6 Related Work

We have discussed the most relevant previous works in Section 4.2. Sampled simulation
has been an active research area for several decades, and several techniques were pro-
posed [2, 8, 20, 27, 30, 32, 33, 34, 43, 78, 80, 164] in this direction for different workload
classes primarily for the reduction of simulation time and resources. Analytical modeling
is yet another solution to evaluate a complex workload quickly. Prior works proposed
analytical models to derive the performance of processors [84, 85], cache miss rates [86],
branch miss rates [87], DVFS performance [165], etc. However, analytical performance

modeling can be limited in supporting new designs, requiring new models for each.

5.7 Conclusion

In this work, we propose a novel methodology, Pac-Sim, that allows for the sampled
simulation of dynamic software that responds to workload and run-time execution con-
ditions. Pac-Sim is the first, to the best of our knowledge, to propose a sampling solution
that simulates these dynamic conditions in both a fast (up to 523.5x speedup, 210.3x
on average) and accurate way (average errors of 1.63% and 3.81% for statically and

dynamically scheduled benchmarks, respectively).

Chapter

XPU-Point: Simulator-Agnostic Sample
Selection Methodology for Heterogeneous
CPU-GPU Applications

Reality is merely an illusion, albeit a very persistent one.

— Albert Einstein

The end of Dennard scaling has driven chip design towards multi-core and heterogeneous
architectures. As multi-core architectures are reaching their scaling limits, the focus has been
pivoted to heterogeneous architectures. However, performance evaluation of heterogeneous
systems using full-program simulations is prohibitively slow. We introduce XPU-Point,
a novel methodology to identify representative regions within heterogeneous CPU-GPU

Workloads, enabling fast and accurate performanee evaluation through sampled simulations.

6.1 Introduction

Computation exists everywhere in this era, spanning from large-scale systems to low-

power devices and mobile CPUs. There has been a profound increase in the demand

118 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

XPU-Pin
e
GTPin tool NVBit tool i x-Instrument tool i
(Int=el GPU) (NVII=)IA GPU) b E (x-Accelerator) !
. < ---Event callback-s---_-; ---------
Pin tool (x86 CPU)

Figure 6.1: A high-level schematic of XPU-Pin. The x86 CPU instrumentation tool Pin
interacts with GPU instrumentation tools (like GTPin and NVBit) for event-based call-
backs. Integration with similar tools for other hardware components (x=TPUs, NPUs,
accelerators, etc.) is feasible. The simulation phase (not shown), which is performed
using a variety of tools, is handled separately.

for high-performance computing (HPC) resources in recent years [166]. However, the
limitations of multi-core architectures to scale due to the associated power and thermal
constraints (power wall) restricts their ability to deliver significant performance improve-
ments [167, 168]. This has resulted in a shift toward domain-specific architectures and
accelerators like GPUs [169], TPUs [170], and FPGAs [171]. Embracing heterogene-
ity in architectures is one way forward for continued performance improvements [12]
to meet these growing computational demands. The use of a combination of architec-
tures is needed to continue to scale the performance of future systems [172], to achieve

accelerator-level parallelism [173].

The prevalence of CPU-GPU architectures in heterogeneous computing arises from their
ability to address the evolving demands of modern workloads, coupled with their well-
established programming models and their ability to exploit parallelism at a massive
scale. GPUs have emerged as the most widely used general-purpose accelerators in mod-
ern data centers [53] and supercomputers [54] that accelerate massively parallel big data
analysis [55, 56] and machine learning [57, 58] workloads. While previous works have
investigated characterizing workloads that consist of CPU components [2, 20, 30, 32, 34]
and GPU [45, 46, 59, 60] components independently, as well as their comparative anal-
yses [61], hybrid solutions that support analysis and workload reduction, like sampling,

for multiple types of heterogeneous workloads, from CPUs, GPUs, and even custom

6.1 Introduction 119

CNative EProfiling M Sampled Sim M Full Sim
| T T T T T T T T T T T T

century
@ 109 i decade
year
qé 106 month
g g day
% 103 hour
g B I I I I I I I minute
b I R T T S N S O I N N T SRR S
/ g\,/ g&/ / ,g/ N N BN N S
Q,O& O@‘Z” &@‘b’ 4\@‘0‘ 039 \&Q) \/(‘Q/\,('o/%‘\,/é\‘b /Q\"o /Q%%/%%/‘&/Q%q’/.{\)&
T E T F SIS &L SIS
D D T S S S S DS
P FLLSLESEOEES
PP I s 55
® & D F S
QT e NSEERN
]

Figure 6.2: The wall time (in seconds) for evaluating realistic heterogeneous CPU-GPU
workloads such as SPEChpc 2021 benchmarks (tiny set) using ref inputs and PyTorch
Inference runs. Benchmarks were evaluated in (a) native run, (b) profiling using XPU-
Point, (c) parallel simulation of the representative regions identified using XPU-Point
(mean wall time with error bars indicating the shortest- and longest-running regions),
and (d) full-detailed simulation. The experiments are conducted on machines that use
Intel Sapphire Rapids CPU and Intel Ponte Vecchio GPU. The simulation wall times
are estimated using the simulation rate of gem5 [6] and Accel-Sim [7]. im=Imperative,
ts=TorchScript.

hardware accelerators (like FPGAs), have not yet been identified. Given the importance
of these workloads, from HPC systems to data center use, simulation of heterogeneous
workloads is key to understanding the interactions between compute components and

how these interactions can affect overall runtime performance.

The growing significance of heterogeneous computing architectures necessitates a refined
approach to performance analysis. While GPUs have become indispensable for accelerat-
ing workloads like Al training and inference, the CPU plays a critical role in scheduling
tasks and managing memory. A performance bottleneck within the CPU can have a
cascading effect, given Amdahl’s law [174], impacting overall system performance. Prior
works [175] discuss the shortcomings of traditional GPU-centric analysis methods that

overlook the role of the CPU in data movement and task management. Sampled simu-

120 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

lation techniques, while prevalent for independent CPU and GPU performance analysis,
suffer limitations when applied to tightly coupled CPU-GPU systems. Such simulations
or performance analyses often neglect the effects of inter-core communication and cache
coherency, that significantly impact the microarchitectural state. Additionally, they may
not accurately capture synchronization behavior, leading to unrealistic execution order

and resource usage.

Existing instrumentation and analysis tools are insufficient to capture the interactions
between CPU and GPU in heterogeneous applications. While there are instrumentation
and analysis frameworks for CPUs, such as Pin [116] or DynamoRIO [176, 177] for x86
programs, and for GPUs, such as GTPin [81] for Intel GPU programs and NVBit [178] for
NVIDIA GPU programs, there is no framework for co-analysis of CPU and GPU code.
In this chapter, we introduce XPU-Pin, a novel framework designed to bridge this gap
by enabling simultaneous analysis of both CPU (x86) and GPU (Intel, NVIDIA) code.
XPU-Pin has a Pin-based driver that loads the GPU tool library (GTPin or NVBit)
explicitly and triggers it, as shown in Figure 6.1. CPU and GPU analyses can thus
be integrated within the same environment, simplifying development and allowing for
a unified and more accurate analysis. Additionally, the GPU tool can trigger functions
registered by the driver on certain GPU events, such as the start or end of a GPU kernel.

The CPU and GPU tools can thus coordinate their analysis around GPU events.

Evaluating the performance of large workloads on heterogeneous systems presents sig-
nificant challenges due to long simulation times, which can take several months or years,
as illustrated in Figure 6.2. Training large language models (LLMs) with multi-billion
parameters, like GPT-4 [179], LLAMA2 [180], or Gemini [181], can take several months,
while the inference runs may take several seconds even on powerful hardware [182, 183].
Simulation serves as a powerful tool for architects to explore potential hardware improve-

ments that suit certain workload types. However, simulating such workloads in their

6.1 Introduction 121

entirety can be prohibitively long. Workload sampling stands as a popular technique for
CPUs [2, 8, 20, 32, 33] and GPUs [16, 45, 46, 59|, presenting a compelling solution by
selecting a representative subset of the workload for detailed simulation. This approach
delivers substantial speedups while maintaining accurate performance measurements.
However, there are currently no established sampling solutions that apply to hetero-
geneous workloads. We build on XPU-Pin to propose XPU-Point, a unified sampling
solution for heterogeneous workloads that can accurately build a representative sample
for the fast and accurate performance analysis of the workloads. Through XPU-Point, we
propose a comprehensive methodology across a broad spectrum of real-world workloads,
from scientific simulations to artificial intelligence. This enables computer architects and
performance researchers to quickly estimate the performance of long-running, heteroge-
neous workloads using sampled simulation on existing simulators [97, 135] which was

not possible before.

The accuracy of the XPU-Point methodology is assessed (sample validation) based on
sampling errors — the difference between the full workload performance and the per-
formance extrapolated from the samples. Traditionally, sample validation is performed
based on a detailed, and slow, timing simulation platform. We have identified two is-
sues with simulation-based sample validation (i) it assumes that an accurate simulator
for the target system is available which is not the case in the early stages of system
design and (ii) it requires simulation of the entire test program to get the full workload
performance which can be impractically slow as illustrated in Figure 6.2. We instead
separate sample validation from simulation and perform the validation on real hardware
with XPU-Timer (Figure 6.3). Using XPU-Timer, sample validation can be performed

at near-native speed, whereas simulation-based validation can be significantly slower.

The high-level overview of the entire framework is shown in Figure 6.3. The focus

of XPU-Point methodology is on selecting samples for simulation and validating those

122 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

Heterogeneous

Workload

Sample Selection

XPU-Profiler

XPU-Pin

XPU-Timer

XPU-Pin

Full
Performance

Weighted XPU-Timer

Sampling Error

XPU
Regions

)

Extrapolated

Sample Validation

Performance

J

J

Figure 6.3: The end-to-end workflow of the XPU-Point methodology to sample het-
erogeneous workloads. XPU-Point uses XPU-Profiler to capture execution profiles of a
heterogeneous workload. Once the representative regions (samples) are identified for the
workload, their performance, as estimated by XPU-Timer (or a heterogeneous simula-
tor), is extrapolated and compared with that of the full workload to validate the sample.

samples in a simulator-independent manner. The samples can be used to drive simulation

using the platform of choice. Leveraging XPU-Point samples for simulation is left for

future work.

In this work, we make the following contributions:

i. We propose XPU-Point, a methodology that goes beyond prior workload sampling

ii.

1ii.

of large-scale applications through sampled simulation.

techniques to be the first to allow for the support of heterogeneous applications.

This enables researchers to conduct a unified and accurate performance evaluation

We introduce XPU-Pin, an instrumentation framework that we developed in this
work to evaluate heterogeneous CPU-GPU applications. XPU-Point is built upon
XPU-Pin, and supports both Intel- and NVIDIA-based CPU-GPU workloads.

We experimentally assess the efficacy of XPU-Point in terms of sampling accuracy
and potential simulation speedup of CPU-GPU workloads on various hardware

platforms using our XPU-Timer tool instead of using a simulator.We have open-

6.2 XPU-Pin Framework 123

sourced the XPU-Pin framework and the XPU-Point project on GitHub [184].

iv. We extensively evaluate XPU-Point across several heterogeneous workloads, in-
cluding industry-standard benchmarks such as SPECaccel 2023, SPEChpc 2021,
AutoDock, GROMACS, and PyTorch inference demonstrating high accuracy (ab-

solute sampling errors less than 5%).

The rest of the chapter is organized as follows. In Section 6.2 and Section 6.3, we discuss
the background and challenges involved in the performance evaluation of heterogeneous
workloads on modern architectures. Section 6.4 presents the XPU-Point methodology in
detail. We then describe the experimental infrastructure in Section 6.5, followed by an
extensive evaluation of XPU-Point in Section 6.6 along with case studies to demonstrate
the applicability of the proposed methodology. Finally, we present the related work in

Section 6.7 and conclude the chapter in Section 6.8.

6.2 XPU-Pin Framework

In this section, we explore prominent solutions for binary instrumentation, along with
insights into programming models designed for heterogeneous workloads. We also delve
into the development of XPU-Pin, a tool we specifically built to facilitate the co-analysis

of CPU-GPU heterogeneous workloads.

6.2.1 Instrumentation and Analysis Tools
6.2.1.1 Intel Pin

Pin [116] is an x86 binary instrumentation framework that allows users to write Pin
tools, which are C/C++ programs specifying analysis to be done at certain points (for
example, every instruction, basic block, etc.) in program execution. Pin works in two
modes, namely JI'T mode and Probe mode. JIT mode works by loading an input x86

binary in memory and translating (just-in-time) its x86 code into x86 code to another

124 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

region of memory called the code cache. The translation overhead in the JIT mode
can result in a 40% slowdown [185] in performance even without instrumentation taking
place. The slowdown and performance perturbation can be exacerbated further by the
additional analysis routines. In contrast to JIT mode, probe mode works by loading an
input x86 binary in memory and patching the code at certain probe points as specified
by the Pin tool. Probe mode does not translate the code, but instead redirects the code
inline to analysis routines. In general, Probe mode demonstrates lower overheads at the

cost of programmer effort.

6.2.1.2 Intel GTPin

Intel’s GPU instrumentation framework, GTPin [81], works by inserting analysis code
into the GPU program via GTPintools as shared libraries. The Intel Graphics compiler
generates code for the specific Intel GPUs at run time. GTPin then dynamically adds
extra code specified by a GTPintool into the generated code. This modified code is
then offloaded to the GPU and runs there. Any results created by the extra GTPintool
code are stored in a memory buffer, and that buffer is processed on the CPU at various

synchronization points.

6.2.1.3 NVIDIA NVBit

NVBit [178] is a dynamic binary instrumentation framework for NVIDIA GPUs that
works on the Linux operating system. It provides a high-level Application Program-
mer’s Interface (API) for writing instrumentation tools as Linux-shared libraries. A tool
library is injected in a GPU application using the LD_ PRELOAD [186] feature in Linux.
NVBit tools can inspect and modify the NVIDIA GPU assembly code (SASS) of GPU

applications without requiring recompilation.

6.2 XPU-Pin Framework 125

6.2.1.4 Implementation of XPU-Pin Framework

Existing tools mainly focus on either CPU or GPU components of an application due to
the limitations of traditional instrumentation tools. Intel Pin [116] and DynamoRIO [176,
177] are used to analyze CPU applications, while GTPin [81] and NVBit [178] are used
for GPU kernel analysis. In contrast, our newly designed framework, XPU-Pin, allows
users to analyze and instrument heterogeneous CPU-GPU workloads with a single tool.
XPU-Pin starts as an x86 analysis tool based on Pin (either JIT or Probe mode) and
then invokes the GPU analysis shared library. The straightforward approach of linking
in a GPU analysis library is not an option, as Pin requires all the libraries a Pin tool
uses to be built with a special Pin runtime provided. Modifying GPU analysis tools
to use special Pin runtime can be restrictive and not practical with a large number of
legacy GPU analysis tools. For Intel GPUs, an alternative to linking in a GTPin tool
library is to explicitly load it at runtime from the driver Pin tool. However, this re-
quires using dlopen() from the the application’s runtime instead of Pin runtime. For
NVIDIA GPUs, the NVBit analysis framework utilizes the LD_PRELOAD feature to
inject itself into the application. This mechanism remains effective when combined with
x86 Pin. CPU and GPU analyses can thus be integrated within the same environment,

simplifying development and allowing for a unified and more accurate analysis.

Legacy GPU analysis tools can thus be executed unmodified with x86 CPU analysis
using Pin (either using dlopen or LD_PRELOAD). For coordinated CPU and GPU
analysis, GPU analysis tools can implement an optional callback handler registration.
When the Pin driver explicitly loads the GPU analysis library, it calls this registered
handler. The GPU tool then uses this handler to obtain and store pointers to Pin driver
functions, which it can later invoke in response to specific GPU events (like kernel start
and end). This mechanism enables CPU and GPU tools to synchronize their analysis

based on these GPU events. Figure 6.4 shows the control flow for an XPU-Pin tool

126 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

xpu-pin-driver.so GPUAnalysis.so
[optional]
d1_open (GPUAnalysis.so) GPUAnalysisRegisterCallbacks (..)
[optional] OnKernelBuild
GPUAnalysisRegisterCallbacks (« cpu_callback_on_kernel_build (kernel_name)
callback_on_kernel_build, OnKernelRun
callback_on_kernel_run, - cpu_callback_on_kernel_run (kernel_name)

callback_on_kernel_complete) OnKernelComplete

» cpu_callback_on_kernel_complete (kernel_name)
|GT-Pin only] [GT-Pin only]

GTPin_Entry (argc_gtpin, argv_gtpin) [GTPin_Entry (..)

<start GPU analysis>

Figure 6.4: The control flow of XPU-Pin co-analysis tool for an x86 CPU and Intel
GPU or NVIDIA GPU.

combining x86 Pin tool (xpu-pin-driver.so) and GTPin analysis tool (GPUAnalysis.so).
Including a GPU analysis library can inadvertently cause the CPU analysis tool to treat
it as part of the application. To prevent this, the CPU tool must explicitly exclude
it from instrumentation. The XPU-Pin framework provides an API enabling the CPU

analysis tool to retrieve the name of the GPU analysis library for this purpose.

6.3 The Imperative For Efficient Simulation of Heteroge-

neous Systems

This section highlights the need for efficient methodologies to evaluate the performance
of large workloads running on heterogeneous computing systems in a fast and accurate

way.

6.3.1 The Trend Towards Heterogeneity

The traditional Moore’s law [9, 187] driven performance improvements have diminished
in recent years [188]. Furthermore, multi-core scaling may be reaching its limits due to
power constraints [167]. This marked a significant shift towards heterogeneous architec-
tures, primarily driven by the increasing complexity and computational demands posed
by artificial intelligence (AI) workloads. As the demand for high-performance computing

(HPC) systems and data centers continues to grow, understanding and optimizing the

6.3 The Imperative For Efficient Simulation of Heterogeneous Systems 127

performance of applications running on heterogeneous architectures becomes critical.
The coexistence of multiple processing units, such as CPUs and GPUs, in these systems

(typically known as an XPU) has become a standard of modern computing.

6.3.2 Limitations of Traditional Analysis Methodologies

Traditional heterogeneous systems tend to underutilize the available computing power of
CPU and GPU resources [189, 190]. Most traditional heterogeneous applications use the
CPU to schedule computing tasks for accelerators like GPUs. While the highly parallel
computation happens in the GPU, the CPU waits, causing the CPU cycles to be wasted.
However, this may not be the case with emerging applications that may fully utilize the
CPU resources by executing tasks concurrently on the CPU and GPU. Independent per-
formance evaluations of CPU and GPU using simulation techniques can yield misleading
microarchitectural state estimations, especially in tightly coupled systems. These eval-
uations cannot accurately capture the shared memory and cache access patterns, which
are influenced by the underlying cache coherency protocols. This independent analysis
can lead to inaccurate microarchitectural states due to the misrepresentation of syn-
chronization between the processing units. Consequently, resource usage and execution
order might be misrepresented. Therefore, co-analysis and co-simulation techniques are

essential for accurate microarchitectural state evaluation in CPU-GPU systems.

6.3.3 Effective Sampling of Heterogeneous Workloads

There are several methodologies that address the problem of sampling single-threaded [2,
20, 27] and multi-threaded [8, 32, 33, 34, 43] CPU workloads. There are several sampled
simulation techniques that consider GPU workloads [16, 45, 46, 59, 60, 82, 83] to speed
up GPU-only simulation. Among the prior works for the sampled simulation of GPU
workloads, Kambadur et al. [59] proposed a GTPin-based methodology for the sample

selection of Intel GPU workloads. The methodology utilizes basic block information

128 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

(along with other program features) to characterize program execution. Prior works
like TBPoint [45] and PKA [46] utilize handpicked feature vectors, including kernel size
and control flow divergence, to classify similar GPU regions. Photon [16] employs a
cluster-based summarization technique that groups similar warps based on their behav-
ior and constructs basic block vectors (BBVs) for each cluster by aggregating individual
warp profiles and concatenating them. All these works consider GPUs as independent
computing units, which rely on the assumption that the heterogeneous workload could
be divided into CPU-only and GPU-only components. Under this assumption, the total
execution time of the heterogeneous application can be calculated by summing up the
CPU execution time, GPU execution time, and the data transfer time between CPU and
GPU. However, this assumption may no longer be valid for emerging workloads. Inde-
pendent analyses may result in inconsistent timings for workload-specific CPU and GPU
events, such as kernel launches, memory allocations, and warp divergence. Therefore, a
combination of CPU-only and GPU-only sampling methods for heterogeneous systems

could lead to inaccurate performance measurements.

6.3.4 Effects of Microarchitectural Warmup

In sampled simulation, microarchitectural warmup is necessary to ensure the simulated
microarchitecture reflects a realistic state prior to detailed performance measurements.
Previously proposed microarchitecture warmup methodologies [5, 88, 91, 92| enable the
detailed simulation of the regions of interest starting at the right state. Warmup method-
ologies can be categorized into functional warming and statistical warming. Functional
warming techniques [32, 33] rely on actual program execution, whereas statistical warm-

ing [5, 88, 91, 92] leverages profiling tools to gather memory access information.

XPU-Point provides a framework for collecting memory access information necessary
for developing integrated CPU-GPU warmup methodologies in heterogeneous systems.

Architects tend to integrate computing devices like CPUs and GPUs to share L3 cache,

6.4 XPU-Point Sample Selection Methodology 129

Shared
Libs »

Tuning m

» t »

CPU-GPU
Workload Cluster Weights

Figure 6.5: The workflow of XPU-Point methodology to capture representative regions
(or ROIs) along with their corresponding weights suitable for the sampled simulation of
heterogeneous workloads.

XPU-Profiler | By

memory, etc., for higher throughput. For instance, NVIDIA Grace-Hopper [191] utilizes
a CPU-GPU coherent memory model, while Apple’s M-series processors deliver CPUs
and GPUs on the same die that share memory. The trend towards tightly coupled CPU-
GPU computing will continue, especially with the advancement in interconnects (like
CXL [192] and NVLink [193]) and chiplet-based [194] IC packaging [195] technologies.
This enables the tight integration of CPUs and GPUs within a single package, as seen
in Intel’s Lunar Lake architecture [196] or AMD’s Exascale Heterogeneous Processor
(EHP) architecture [99, 197, 198]. XPU-Point can be extended to gather shared mem-
ory access patterns, enabling the generation of combined warmup data that addresses
this crucial requirement in integrated GPU systems. Multi-GPUs are widely used in
high-performance computing [199] and large language models (LLM) [200] to accelerate
their applications. In multi-GPU systems, CPUs coordinate the interaction between the
GPUs. In this context, XPU-Point may be extended to collect warmup data to enable

accurate sampled simulation of multi-GPU systems.

6.4 XPU-Point Sample Selection Methodology

In this section, we introduce XPU-Point, a novel methodology to sample heterogeneous
CPU-GPU workloads. To the best of our knowledge, XPU-Point represents the first
solution to efficiently co-sample heterogeneous workloads. The overall workflow for the

XPU-Point methodology is outlined in Figure 6.5. The methodology relies on our XPU-

130 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

Profiler to generate the combined execution signature vectors of CPUs and GPUs. These
heterogeneous execution vectors are clustered to identify representative regions that can
be used for simulation-based performance evaluations of future heterogeneous architec-

tures.

CUDAe Grid Thread block Warp Thread o

a8 1T 1T
W]~ Y

..................................... Work-group - Sub-group - Work-item--e

Block/Group, b Block/Group;

Kernel ——— S R T[] e 1T

ML

Block/Group,, Block/Group s

Figure 6.6: A comparison of the hierarchical structures used in CUDA and SYCL
programming models to distribute kernel execution tasks, showing the level of granularity
at which work is assigned to the execution units. CUDA primarily utilizes the SIMT
execution model, while in SYCL, underlying architecture and implementations determine
the execution model.

6.4.1 Workload Distribution on GPUs

GPUs follow a hierarchical structure in both their hardware and programming models to
efficiently manage the massive number of threads. For example, NVIDIA GPUs typically
comprise multiple Streaming Multiprocessors (SMs), with each SM containing several
CUDA cores. To leverage the parallel architecture of NVIDIA GPUs, several threads
(usually 32 or 64 threads) are grouped into a warp (or wavefront). NVIDIA GPUs
primarily utilize a Single Instruction, Multiple Thread (SIMT) [201] model of CUDA,
where threads within a warp share the same program counter (PC) and consequently
execute the same instruction concurrently on the same CUDA core. Furthermore, mul-
tiple warps are grouped into thread blocks, which are then scheduled for execution on
the same SM and utilize the shared cache. The GPU kernels (functions offloaded to the
GPUs for parallel processing) are structured as Grids to orchestrate the execution across

all thread blocks.

6.4 XPU-Point Sample Selection Methodology 131

The concept of work groups in SYCL directly maps to how Intel’s Xe [202] cores dis-
tribute tasks. Work-groups, analogous to thread blocks, group a defined number (SIMD-
width) of threads for cooperative execution and data sharing. Intel GPUs typically em-
ploy a more flexible SIMD (Single Instruction, Multiple Data) [203] model redesigned
for high performance [204] on Intel GPUs in the SYCL programming model. This means
that threads within a work-group can execute a single instruction on multiple data el-
ements simultaneously. Work-groups are subdivided into sub-groups (similar to warps)
that share resources like local memory. Execution occurs on Vector Engines (VE) within
the Xe cores. SYCL employs queues to manage the submission of work-groups for ex-
ecution on the VE. ND-range defines the high-level structure of the kernel for parallel
execution across the processing elements, specifying a multidimensional grid of thread
blocks to be launched on the GPU. Figure 6.6 shows the workflow of a GPU kernel

execution on Intel and NVIDIA systems.

XPU-Point takes into account both CUDA and SYCL programming models to represent
the amount of execution done by the device. The execution in traditional CPU workloads
can be quantified by the number of instructions or basic blocks (code blocks that have
single entry and exit points) executed by each thread. In this work, we adopt a similar
approach to quantify the execution of GPUs. However, GPU execution differs due to
the SIMT /SIMD paradigm, where multiple threads or work-items collaborate to execute
an instruction. To account for this, XPU-Point leverages warps or subgroups as the

fundamental unit of execution on GPUs, analogous to instructions on CPUs.

6.4.2 Slices of Heterogeneous Applications

A slice (or region) represents a chosen segment of the application’s execution flow gen-
erated by splitting the application at a well-defined point. For a slice to be effective for
workload characterization, it must be repeatable across multiple runs of the application

to ensure consistency in the behavior for accurate sampled simulation and performance

132 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

: Slice
i T
1 | :
.. : ! HEEE NN
| EEEEEEEN
é <! EeEEEEEE H HEEE EEEE
< i -~ EEEREEEE
I-........"~2
o - C — %, ANEE EEEE
g ——— e
= . D(_)
: Y
Y cpU o GPU
Heterogeneous

Workload

Figure 6.7: The representation of a slice (or region) in XPU-Point. A slice is defined
as the execution window between consecutive kernel calls within a heterogeneous appli-
cation.

evaluation. Traditional CPU workload sampling methodologies such as SimPoint [20],
BarrierPoint [34], and LoopPoint [8] identify slices based on repeatable program con-
structs. Simpoint, for instance, focuses on identifying intervals based on fixed-size in-
structions. Meanwhile, BarrierPoint and LoopPoint target regions that are delineated
by synchronization barriers and loops, respectively. Previously proposed sampled sim-
ulation techniques for GPU workloads [16, 45, 46] focus solely on the GPU kernels,
completely ignoring any interactions with the CPUs. In this work, we propose a novel
approach for slice identification, which is a contiguous code segment that spans from the
end of one kernel call to the end of the subsequent kernel call, as shown in Figure 6.7.
Therefore, the slice of a heterogeneous application includes both CPU and GPU execu-
tion. Similar to loops in LoopPoint or inter-barrier regions in BarrierPoint, the slices
identified by XPU-Point are repeatable across multiple executions on platforms with

similar compute capabilities.

6.4.3 Capturing Heterogeneous Execution Profiles

Understanding execution profiles within CPU-GPU systems demands a comprehensive

representation that integrates execution profiles from both processing units. Tradition-

6.4 XPU-Point Sample Selection Methodology 133

ally, the classification of regions based on the similarity of the code executed [18, 19]
works well for CPU workloads. The regions are represented as basic block vectors
(BBVs), which comprise basic blocks and their frequency. A number of prior works on
selecting representative regions of a workload have been built on this idea of representing
regions using code signatures. In the case of multi-threaded workloads where threads
split the work to execute on multiple cores, the amount of work done by the threads
is represented by concatenating the BBVs of each thread. Concatenating BBVs across
CPU and GPU threads is evident to be a promising technique, as it merges CPU thread
profiles with detailed GPU data, including both global and individual thread profiles.
Prior works show that concatenating per-thread profiles to form CPU BBV [8, 34, 164]
or per-warp profiles to form GPU BBV [16] leads to the accurate representation of

thread-level parallelism.

In this work, we devise a technique to represent the heterogeneous regions of the work-
load. We utilize XPU-Profiler, the profiling tool that we built upon XPU-Pin, to si-
multaneously generate BBVs for CPU and GPU execution. Within this framework, we
refer to CPU BBVs as those derived from program execution on the CPU, while GPU
BBVs refer to those obtained during program execution on the GPU. We demonstrate
that concatenating all GPU warps (or sub-groups) is efficient in representing the GPU
BBYV. By concatenating the CPU BBV and GPU BBV forming XPU-BBV (shown in
Figure 6.8), we construct a unified representation that captures the behavior of a hetero-
geneous region. Previous studies [8, 34] have demonstrated that concatenating feature

vectors effectively captures individual thread behavior.

6.4.4 Selecting the Representative Slices

Representing the sheer number of GPU threads (or warps) in an XPU-BBV leads to
a significant increase in vector dimensionality, resulting in the curse of dimensional-

ity [205]. This phenomenon slows down clustering algorithms, which are critical for

134 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

CPU BBV GPU BBV
‘ «--=--- Concatenate = == — = - ‘

XPU-BBV

Figure 6.8: The concatenation of CPU and GPU BBVs into a longer, combined XPU-
BBV that represents a heterogeneous region in XPU-Point methodology.

identifying representative regions from the profile data. To address this challenge, we
employ traditional dimensionality reduction techniques such as random linear projec-
tions. The algorithm selected for a desired level of dimensionality reduction is pivotal
in minimizing information loss within the profile data [206]. This ensures that the re-
sultant lower-dimensional space retains the vital characteristics necessary for accurate
workload characterization. Due to the differences in magnitude between CPU and GPU
dimensions, these feature vectors need to be projected separately. Further, we employ k-
means clustering algorithm [76] to cluster these heterogeneous regions as represented by
the lower-dimensional BBVs. The region closest to the centroid of each cluster serves as
the representative of the cluster [20]. Advances have been made in program representa-
tion using execution embeddings [207] and in clustering using deep neural networks [208].
We believe that such improvements are orthogonal to the basic idea of XPU-Point and

can be incorporated here.

6.4.5 Sample Validation and Tuning

The representativeness of the regions selected using the proposed methodology needs
to be validated. Sample validation, employing real hardware measurements like those
demonstrated in prior works [60], can be leveraged here. To validate the representative-
ness of the selected slices within heterogeneous workloads, we introduce XPU-Timer, a
tool built upon XPU-Pin. XPU-Timer leverages the x86 rdtsc instruction to provide

system timestamps (TSCs) at critical points during the native execution of the work-

6.4 XPU-Point Sample Selection Methodology 135

load: program start, program finish, and the boundaries of each predefined slice. These
timestamps allow us to extract the execution time for each representative slice. By
weighing these region execution times with their corresponding weights, we extrapolate
the execution time of the entire program. The difference between the full execution time
measured and the extrapolated time is known as the sampling error (or prediction error).

A lower sampling error indicates a more accurate selection of representative slices.

6.4.6 Estimating the Full Application Performance

Microarchitecture simulation and exploration greatly benefit from sampling large, het-
erogeneous workloads. Instead of simulating entire workloads for microarchitecture ex-
ploration, which is computationally expensive, representative slices of the workload can
be simulated rapidly. These slices capture the complex characteristics of heterogeneous
workloads, enabling researchers to explore how future microarchitectures can be opti-

mized for such workloads.

XPU-Point identifies representative slices of a heterogeneous workload that can be used
for detailed cycle-level or cycle-accurate microarchitecture simulations. The regions can
also be simulated on execution-driven heterogeneous simulators like Multi2Sim [96] and
gemb-gpu [97]. We would like to point out that the XPU-Pin framework can be used
for heterogeneous trace generation to support trace-driven simulators like MacSim [95].
Accurate performance measurements in sampled simulations rely on a warmed-up mi-
croarchitectural state before detailed simulation. However, warmup reconstruction for
heterogeneous systems remains an open research area. As this falls outside the scope of

our current work, we will not explore it further in the chapter.

136 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

6.5 Experimental Setup

Establishing the fidelity of workload sampling techniques — the ability to accurately rep-
resent full program behavior using the selected sample set — is essential. Simulation-based
performance comparisons are typically employed to assess this characteristic. However,
this approach is impractical for large, heterogeneous workloads. Thus, we follow a hybrid
evaluation approach by employing simulation-based performance evaluation for shorter
applications and hardware-based performance measurement using XPU-Timer for all

applications.

For our evaluation, we use a combination of standard heterogeneous benchmarks as well
as real-world HPC and Al workloads that use both CPUs and a GPU for computation.
We evaluate SPECaccel 2023 [209] benchmarks and SPEChpc 2021 [210] benchmarks,
along with real-world workloads like AutoDock [211, 212, 213], GROMACS [214], and
PyTorch [215] inference runs.

Table 6.1: The combinations of CPUs and GPUs for Intel- and NVIDIA-based systems
used to evaluate XPU-Point methodology.

CPU GPU
Intel Alder Lake [216] Intel Discrete Graphics 2 (DG2)
Intel Alder Lake Intel Iris Xe (integrated)
Intel Ice Lake-SP [217] Intel Ponte Vecchio (PVC) [218]

Intel Sapphire Rapids [219] Intel Ponte Vecchio (PVC)
Intel Cascade Lake [220] NVIDIA A100 [221]

Intel Skylake [222] NVIDIA GeForce GTX 1080
Intel Skylake NVIDIA TITAN Xp

Further, we also evaluate all of the workloads with XPU-Timer using native hardware
runs on both Intel-GPU-based and NVIDIA-GPU-based heterogeneous systems, and,
therefore, we separately compile the benchmarks suitable for these systems. For Intel-
based systems, we use Intel’s oneAPI [223, 224] toolkit to build the benchmarks, whereas

for NVIDIA-based systems, we use the NVIDIA CUDA toolkit [225]. The machines that

6.6 Evaluation 137

we used for our evaluation are listed in Table 6.1. Our focus is on demonstrating the
methodology’s efficacy across heterogeneous workloads on both Intel-based and NVIDIA-
based GPU systems. To isolate this aspect, we present the evaluation results for each
system type in separate graphs. This approach avoids comparisons of individual machine
performance and emphasizes the broader applicability of the methodology. Given the
evaluations done in this work, we aim to show that this methodology is applicable across

other heterogeneous architectures.

6.6 Evaluation

This section evaluates the effectiveness of XPU-Point in selecting representative regions
using realistic CPU-GPU heterogeneous workloads. The aim of this work is to allow
for fast and accurate microarchitecture simulations of these workloads to explore future

heterogeneous systems.

We extrapolate the performance of the full workload from the performance of N repre-

sentative regions using the formula:

N
Poroj = Z P, x multiplier;,
i=1

where P,.,; denotes the projected or extrapolated performance of the full workload.
In addition, P, and multiplier; denote the performance obtained and the multiplier
associated with the representative region region;, respectively. The multiplier of a rep-
resentative region is dependent on the number of regions that belong to the cluster that
region; represents [34]. This formula allows us to extrapolate performance metrics like

runtime, cache behaviors, branch behaviors, and IPC for the entire workload.

Sampling Error and Speedup. We quantify the difference between the extrapolated

performance metrics and the actual measured performance of the full workload to obtain

138 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

sampling error or prediction error [20]. We estimate the performance of the workloads
and the representative regions leveraging the system timestamp counter (TSC) on real
hardware, which is equivalent to runtime obtained through microarchitecture simulation.
The long simulation times required for full workloads make simulation-based validation

impractical for large workloads.

The sampling error Aggppie can be computed using the formula:

P, .
A:samele = ‘1 - %
real

)

where P,q, is the actual performance obtained through the measurement of the full
workload. Usually, sampling error is expressed as a percentage (error rate). This is

obtained by multiplying the absolute value of the sampling error (Aggmpie) by 100.

We define the speedup obtained using XPU-Point as the reduction in the amount of

work to be analyzed or simulated in detail after sampling [34]. That means,

speedup — numislices’
N
where N is the number of representative regions, and num_ slices is the total num-
ber of slices in the entire workload. The speedup we show here is equivalent to the
serial speedup, which is achieved by simulating the representative regions sequentially.
Note that this speedup represents the minimum achievable reduction in simulation time.
The simulation of these representative regions can be parallelized, which could lead to

significantly higher speedups than the values presented here.

Cross-microarchitecture Validation. XPU-Point relies on the microarchitecture-
independent selection of representative regions. This allows researchers to profile an
application binary on one hardware and reuse the chosen regions for simulations on

different hardware within the same architecture. This is possible because XPU-Point

6.6 Evaluation 139

100: I l I I I .CIPU .IGPU I |

Figure 6.9: The instruction split between CPU and GPU for loop executions in
SPECaccel 2023 benchmarks using train inputs.

= O Q0
OO O

Instructions%

DO
OO

utilizes BBVs to capture the control flow structure of the program, a characteristic in-
dependent of the underlying architecture. To verify the effectiveness of this approach
across microarchitectures, XPU-Point employs cross-microarchitecture validation. This
validation involves selecting regions on one machine using XPU-Profiler and then validat-
ing their representativeness on another machine with a different CPU-GPU combination

within the same architecture using XPU-Timer.

Runtime Overhead. XPU-Point, like other dynamic binary instrumentation tools,
introduces analysis-dependent runtime overhead. XPU-Profiler has a large overhead
due to extensive library usage and process/thread creation of large workloads. By de-
fault, it instruments all libraries, processes, and threads. However, XPU-Point offers the
flexibility to reduce the analysis overhead by instrumenting specific processes/threads
and libraries. The XPU-Timer tool employs a Pin-probes mode driver, avoiding CPU
instrumentation altogether. The GPU component of the tool utilizes low-overhead in-

strumentation to track key events like GPU initialization and kernel start/stop.

6.6.1 Comparison with GPU Sample Selection

We present a detailed analysis of SPECaccel 2023 [209], a benchmark suite with compu-
tationally intensive parallel heterogeneous applications that exercises the performance
of the accelerator (GPU in our case), host CPU, memory transfer between host and ac-
celerator, compilers, and the runtime system [226]. We used Intel x86 Sapphire Rapids

server with Intel Data Center GPU Max 1100 for this evaluation.

140 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

150 7 I cru B GPU

100 - I
II |I | |
0L . ._ -_ B

N

& > Q
& . S
e bta“ S @“ e @“ S
@‘b »

Num Loops

N

Figure 6.10: The number of loops executed on CPU and GPU in SPECaccel 2023
benchmarks using train inputs.

Figure 6.10 shows the analysis of loops in the main image of the benchmarks identified
using Intel Software Development Emulator (Intel SDE) [227]. The number of loops on
the GPU was obtained using Intel GTPin [81]. For SPECaccel 2023 workloads using
CPU and GPU, we wanted to test the effect of focusing just on the GPU computation.
We tested two profilers: XPU-Profiler that collects combined CPU-GPU BBVs; and
GPU-Profiler that collects the GPU BBVs. In both the cases, the region boundaries are
kernel boundaries leading to the same number of BBVs. GPU-Profiler uses Intel GTPin
to collect per-thread BBVs for the entire computation which are copied to the CPU at
the end of each GPU kernel execution. The average slowdown of the GPU-Profiler for
SPECaccel test cases was 4.7x. XPU-Profiler on the other hand uses Pin JIT mode
instrumentation at the basic block level. Synchronization between multiple threads is
necessary in this case. The average slow-down for the XPU-Profiler for the SPECaccel

test cases was 102x.

Figure 6.11 plots the sampling errors for SPECaccel 2023 benchmarks using XPU-Point
and GPU-Point evaluations. Overall, the sampling errors with GPU-only approach
(geometric mean of 23.9%) are higher than those with the combined CPU-GPU approach
(geometric mean of 0.99%). In the case of 452.ep, focusing on just the GPU computation
in isolation predicts the overall performance with a low error (1.34%) although still

higher than the combined CPU-GPU approach (0.10%). 404.lbm demonstrates another

6.6 Evaluation 141

742 434 210.9 66.8
| 4 \ \ i

Sampling Err%

Figure 6.11: The sampling errors for the SPECaccel 2023 benchmarks with GPU-only
profiles (GPU-Point) vs. CPU-GPU profiles (XPU-Point).

extreme, where the GPU-only approach only found one representative region leading to
210% sampling error. Using heterogeneous profile, 15 regions were identified by XPU-

Point leading to a much lower sampling error (0.56%).

6.6.2 Sample Validation using Native Hardware

While simulation provides a controlled environment for workload analysis, validating
samples on native hardware is often practical for large workloads. To enable this, we
employ XPU-Timer to gather precise performance metrics from native hardware execu-
tions, as mentioned in Section 6.4.5. The results of sample validation using XPU-Timer,

categorized by benchmark suite, are presented here.

6.6.2.1 SPEChpc 2021

The SPEChpc 2021 benchmark suites [210] provide application benchmarks from well-
selected science and engineering codes that are portable across CPUs and accelerators.
The suites include Tiny, Small, Medium, and Large workloads, supporting multiple
programming models and requiring varying amounts of memory and number of ranks
to run. We chose the Tiny workload (60 GB memory requirement) and limited our
testing to a single node/rank. We tested both the test and ref inputs for evaluation.

The sampling errors and speedups for the benchmarks running test inputs are shown

142 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

[intel PVC [l Intel DG2 (cross) I NVIDIA A100

Sampling Err%
=N RN

|

|

| | |

X >> k/ X >> ‘/\) X
v / /
& F
&' = N & > >
Q > o S 3 <
o @ N & B\.QQ ‘0'$
5) {0% {/g‘) <0°.)

Figure 6.12: The sampling errors plotted for the SPEChpc 2021 benchmarks with
test inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled and
validated on an NVIDIA A100 machine.

in Figure 6.12 and Figure 6.13 for the Intel-based systems and NVIDIA-based systems.
Due to the huge memory requirements, we evaluated the ref input set of SPEChpc
benchmarks only on the Intel-based systems, and the sampling errors and speedups are

shown in Figure 6.14 and Figure 6.15.

5 10° .Intel PVC.NVIDIA A100 E
T 102
(j.f 101

x»
>

Figure 6.13: The simulation speedup plotted for the SPEChpc 2021 benchmarks with
test inputs from the tiny set. The benchmarks are sampled on an Intel PVC machine
are cross-validated on an Intel DG2 machine. The benchmarks were also sampled and
validated on an NVIDIA A100 machine.

6.6.2.2 AutoDock-GPU

AutoDock is a widely used software that performs molecular docking simulations. AutoDock

is commonly used for benchmarking and performance evaluation of heterogeneous sys-

6.6 Evaluation 143

&: | | |
m‘* 4 M Intel PVC n
o0
£ of :
= [
% 0t == \ == -
” > > 9 9 > >
A
®& O&‘b’ \be' 4\6@ &% QQ’Q}
& ° & R o) &
9 63\’ NP {0@. %\QQ “2)'@
As) {003 <,§a

Figure 6.14: The sampling errors obtained for the representative regions identified for
SPEChpc 2021 benchmarks that use ref inputs from the tiny set. The representative
regions of the benchmarks are generated and validated on an Intel PVC machine.

4
% 10 M Intel PVC
3
@ 102
210 l
-
X
/

> > . > >
> A 5
@0 & K & &gg 8
N 57 <& R) &
s 42)\’ {0\’ & . b:QQ
o <

Figure 6.15: The speedup obtained for the representative regions identified for
SPEChpc 2021 benchmarks that use ref inputs from the tiny set.

tems. Figure 6.16 and Figure 6.17 show the sampling results obtained on Intel-based
systems and NVIDIA-based systems for AutoDock using XPU-Point. We use three dif-
ferent platforms to validate the sample selected for the AutoDock [211, 213] application
using various inputs. The SYCL implementation of AutoDock [212] is used for evaluating

Intel GPU systems.

6.6.2.3 GROMACS

GROMACS [214, 228] is a widely used open-source tool [229] for the simulation of
molecular dynamics, which uses both CPU and GPU for computation. We manually

configure the type of computation to be offloaded to the CPU and GPU, as shown

144 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

e . Intel DG2 - Intel PVC (cross)

= 3[ENvIDIA A100 IINVIDIA GTX]
=

o0 2 8
g

N IIU_ l]l d |
g ()| =t m 1l |
n \ \ \ \

T
run.lac8 run.lstp run.3ced run.3tmn run.7cpa

Figure 6.16: Sampling errors for AutoDock (work-item=8) using different inputs on
Intel and NVIDIA GPU platforms.

;10 II | [M intel .‘NVIDIA \

run.lac8 run.lstp run.3ce3 run.3tmn run.7cpa

@)

Speedup
= Do
oo

Figure 6.17: The speedup obtained for AutoDock (work-item=8) using different
inputs on Intel and NVIDIA GPU platforms.

in Table 6.2, and identify the representative regions. We evaluate all possible cases
of configuring GROMACS to split the computation across both CPU and GPU. The
sampling errors and speedups are reported in Figure 6.18 and Figure 6.19 for Intel-based
systems and NVIDIA-based systems. We infer that the GROMACS workload Type F,
with the most number of slices, benefits the most from the XPU-Point methodology
achieving the maximum speedup. For Type A, the regions are expected to be larger due
to the predominantly CPU-intensive nature of the workload.

Table 6.2: The classification of GROMACS based on the offloading device for the
execution of each calculation. We also use -nsteps 200 with -notunepme for all types.
The last column shows the number of slices for each type.

Type‘ nb pme pmefft bonded update ‘ #slices

A GPU CPU CPU CPU CPU 305
B GPU CPU CPU GPU CPU 506
C GPU GPU CPU CPU CPU 707
D GPU GPU CPU GPU CPU 908
E GPU GPU GPU CPU CPU 3730
F GPU GPU GPU GPU CPU 3931

6.6 Evaluation 145

| Intel Iris . NVIDIA AlOO

8
6
41 B
2| | | |
0,.‘- | - . - |

Sampling Err%

Figure 6.18: The sampling errors for GROMACS in different settings on Intel Iris
and NVIDIA A100 using XPU-Point.

80| Intel Iris IMINVIDIA A100
60
40
20
0 Ll l- !- ll

&% & & &% & &

Speedup

Figure 6.19: The speedup obtained for GROMACS in different settings on Intel Iris
and NVIDIA A100 using XPU-Point.

6.6.3 Evaluation of PyTorch Inference Workloads

We evaluated PyTorch [230] inference workloads running text processing tasks using
the BERT (Bidirectional Encoder Representations from Transformers) [231] model and
image classification tasks using the ResNet50 (Residual Network with 50 layers) [232]
model. It compares performance across various configurations: data precision (BF16,
FP16, FP32, and INT8 quantization) and execution mode (imperative Python vs. pre-
compiled TorchScript). INT8 quantization represents numbers using just 8 bits, sig-
nificantly improving performance compared to higher precision formats but requiring a
pre-quantization process. These workloads were optimized with the Intel Extension for

PyTorch [215] to be evaluated on the machines with Intel PVC GPUs.

We present the sampling errors of PyTorch workloads using XPU-Point in Figure 6.20

and Figure 6.21. Profiling more libraries caused the XPU-Profiler overhead to increase as

146 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

| | |
m
w 4 |
E
a8 92 |
E I
s 0L H u B
T T T T T T T T T T
B N R S SN
Q\%) Q\’%) Q@,) Q@ /Q‘Z\’b /QQO"%/ Q@)/N \“/\QQ@) P 6\)&@
PRSI N
§F & g
F & F P PP S &7
F @ S

Figure 6.20: The sampling errors obtained for PyTorch Inference runs using XPU-
Point on Intel PVC. im=Imperative, ts=TorchScript.

#Regions

DR S S N S S SN R
Q’\‘b/ Qxb/ Q%/Qﬁ%/éz%/ o o %\5/ P ‘0@“

/ S

é?éﬁéf Q‘(g/ Q(‘Q/ Qi:g/ ‘ng QQ% @Q/ Q?rb'
X

Qj@ Q)Q) Q?@ Q)@ Q)Q) Q)@ §@ %Q/ $@ é&% v
& & RS

€

Figure 6.21: The speedups obtained during the simulation of PyTorch Inference
runs. The line graph (plotted with the secondary y-axis) shows the number of repre-
sentative regions selected using XPU-Point. im=Imperative, ts=TorchScript.

expected, as we observe for BERT_BF16_Ts, BERT_FP16_Ts, and BERT_FP32_Ts, although
the cost of profiling will be amortized over multiple simulations. In general, the profiling
and analysis of all shared libraries is necessary. To speed up the analysis, we chose to

analyze the libraries that significantly impact workload runtime.

The PyTorch workloads use a large number of libraries (more than 150), processes
(around 60), and threads (more than 100), causing a large overhead in analyzing them.

In this work, we focused on the main libraries and processes during instrumentation.

6.7 Related Work 147

B BERT BF16 im BERT FP16 im
B BERT FP32 im [BERT BF16 ts
[I|BERT FP16 ts [IBERT FP32 ts
[|ResNet50 BF16 im [|ResNet50 FP16 im
[JResNet50 FP32 im [ResNet50 FP32 alt im iy
B ResNet50 BF16 ts [ResNet50 FP16 ts
B ResNet50_FP32_ts IINTS_ Quantization

g, o o A ORI

Pin-Bare GTPin-Nothing XPU-Timer GPU-Profiler XPU-Profiler

|

103

Slowdown
—_
Y

10t

100

Figure 6.22: The slowdowns (normalized with the native runtime of the application)
for PyTorch Inference runs on Intel Ponte Vecchio GPU. The slowdown in Pin-
Bare mode measures the slowdown due to running the benchmarks under Pin with
no instrumentation. To evaluate the slowdown caused by the GTPin Tool, we use a
basic instrumentation tool, Nothing. XPU-Timer uses XPU-Pin to collect the timing
information of the benchmarks. The GPU-Profiler profiles the benchmarks using GTPin
to collect BBVs. XPU-Profiler uses XPU-Pin to collect BBVs of the CPU-GPU execution

concurrently.

Figure 6.22 shows the run-time overhead of various evaluation tools used with these

workloads.

6.7 Related Work

We have discussed the most relevant previous works in Section 6.3. Workload sampling
has been an active research area for several decades, and several techniques were proposed
for CPUs [2, 8, 20, 27, 30, 32, 33, 34, 43, 78, 80, 164] and GPUs [16, 45, 46, 59, 60, 82, 83|
in this direction primarily for the reduction of simulation time and resources. Sev-
eral CPU simulators [6, 14, 93], GPU simulators [7, 98, 101, 102], and heterogeneous
CPU-GPU simulators [95, 96, 97, 99, 100, 233] are available for performance estima-
tion. However, simulating large workloads on cycle-level simulators is prohibitively

time-consuming.

Several programming models cater to heterogeneous computing, including OpenMPT [234],

148 XPU-Point: Simulator-Agnostic Sample Selection Methodology for CPU-GPU Applications

StarPU [235], OpenCL [236], OpenMP [237], OmpSs [42], CUDA [225, 238], and AMD
HIP [239]. OpenCL and CUDA are the most widely adopted programming models for
heterogeneous platforms. OpenCL is an open standard for programming heterogeneous
platforms that enables programmers to write portable code. CUDA is a vendor-specific
programming model optimized for NVIDIA GPUs, offering a suite of libraries and tools
to maximize performance. Prior works [240, 241, 242, 243] compare the performance of
CUDA and OpenCL programming models and show that the translation of one model
to another works well for various applications. SYCL [244] is a modern heterogeneous
programming model built on C4++. SYCL programs are structured with two distinct
components: host code and device code (kernels) where the host code is executed
on the CPU, and the kernels execute on either the host or an accelerator (like GPU).
There are several implementations of source-to-source translation tools from CUDA to
SYCL [212, 245]. In this work, we use SYCL (Intel’s implementation [246]) and CUDA

programs to evaluate Intel and NVIDIA GPU systems, respectively.

6.8 Conclusion and Future Directions

In the wake of the ever-increasing demands of Al workloads, effectively evaluating large
workloads on heterogeneous architectures has become ever more significant. This chapter
proposes XPU-Point, a methodology for the sample selection of heterogeneous CPU-
GPU workloads. XPU-Point leverages XPU-Pin, our instrumentation framework to
combine CPU and GPU analysis. We demonstrate the accuracy and efficiency of the
XPU-Point through the evaluation of real-world heterogeneous workloads, highlighting
its ability to significantly reduce the simulation time. This work forms the basis for
selecting representatives to use in a host of simulators, from cycle-level to higher-level

architectural simulation methodologies.

XPU-Point is the first, to our knowledge, to propose a sample selection methodology tar-

6.8 Conclusion and Future Directions 149

geted for heterogeneous workloads. The methodology lays a solid foundation for future
enhancements, including support for multiple accelerator types. Our current focus is on
the sample selection of workloads where the primary process manages kernel launches.
To address complex scenarios, CPU computation loops can be combined with GPU ker-
nel invocations to form repeatable code regions. Although not discussed in this chapter,
XPU-Point can be extended to support multi-GPU systems, which can be enabled by
combining synchronized region profiles from individual GPUs. As system complexity in-
creases, particularly with advanced interconnects like CXL and NVLink, system-specific
considerations become crucial for effective sampling techniques. This work assumes that
the simulator models interconnect effects, making the proposed methodology broadly

applicable.

Chapter

ROlIpert: Rapid Validation and Iterative
Tuning of Workload Sampling Methodologies

The measure of the information content is the measure of the

degree of uncertainty or the degree of surprise.
— Claude Shannon

Accurately evaluating processor performance for future architectures on cycle—accurate sim-
ulators is time-consuming. While workload sampling offers a faster alternative, validating
the representativeness of selected regions of interest (ROIS) requires full program simula-
tions, which becomes impractical for large workloads. This work introduces ROIperf, a
framework that 1everages real hardware to evaluate both the full workload and ROls. This
allows for faster validation of workload sampling, particularly for complex, long-running

WOI‘klO&ClS o

7.1 Introduction

Cycle-accurate, detailed simulation of computer systems tends to be extremely slow,
with simulation speeds of complex, modern processor designs can be as low as a few

thousand instructions per second, that is, more than 100,000 x slower than native speeds.

152 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

HEl Simulation Il ROIperf

Zwqd] e pmo 1 week
f=]

S |'mm m B B B B BB O BN AN BN __ |1 day
Qo

T

= N B e B AN AN BN BN . B BN AN - - |1 hour
o

£

Bl BN B I BN B O R B OB BN e
«

B

Figure 7.1: A comparison of the total wall-time required to validate the representative
regions identified for the multi-threaded SPEC CPU2017 benchmarks using train inputs
(the gap is expected to increase for ref inputs). The bars show a comparison of the
minimum wall time taken to validate the regions (selected using LoopPoint [8] method-
ology) on a cycle-level simulator and the ROIperf framework.

Simulating large modern applications with trillions of instructions in their entirety is,
therefore, not practical when using these methods directly. Instead, simulation of regions
of interest (ROIs) from large application executions and extrapolating the full-program
performance is a standard technique employed [2, 8, 20, 30, 32, 33, 34, 65]. To gain
confidence in the extrapolated results, it is necessary to validate that the ROIs selected
closely represent full-program behavior [62, 63, 64]. Traditionally, such validation is done
by comparing the simulated performance of the entire program with the performance
extrapolated from ROI simulations. However, since full-program simulation for most
realistic applications is impractical, to begin with, such simulation-based validation is

limited to either short-running programs and/or using fast but inaccurate simulators.

Performance monitoring on native hardware offers a significantly faster alternative for
sample validation compared to traditional architecture simulators. Figure 7.1 shows
that the validation of representative regions using our proposed ROIperf methodology
can be performed at near-native speed, while simulation-based validation can take weeks

or months. Accurately identifying representative regions within an application typically

7.1 Introduction 153

involves iterative parameter tuning and re-validation. For example, applications like
gcc may require up to five times more representative regions than other applications, as
shown in previous works [20]. Without extremely fast techniques, it becomes impractical
to validate the efficacy of workload sampling methodologies for large-scale applications.
In this work, we aim to provide a solution to this challenge to enable rapid sample

validation without the need for long-running simulations.

Although measuring full-program performance on native hardware is well-established [247,
248], isolating and measuring the performance of specific regions of interest presents a
significant challenge. To keep simulation times in check, ROIs are often significantly
smaller than the full-program execution. These ROIs might only consist of a few million
instructions, running for just milliseconds on real hardware. Precisely gathering per-
formance data solely for the ROIs on native hardware with high fidelity is challenging.
Loop-based representations of ROIs, for instance, offer high accuracy and reproducibil-
ity [8]. However, current hardware architectures lack native support for directly identi-
fying such representation of regions. In an attempt to address this challenge, we present
ROIperf, a methodology that incorporates lightweight instrumentation to achieve the
necessary control and precision for isolating regions of interest. ROIperf utilizes Pin in
probe mode [116], which is low overhead as it operates by patching an in-memory image
of the application instead of using just-in-time (JIT) compilation, which can introduce
significant performance overheads [185] that interfere with the workload behavior. While
the instrumentation capability of a Pin probe tool is limited, its low overhead makes it
ideal as a building-block for ROIperf. ROIperf uses the Pin probe to merely hook into
the application execution at the beginning and register callbacks based on hardware

performance counters guided by the ROI specification.

154 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

The Repeatability Challenge

Profile-based simulation region selection techniques, like SimPoint [20], typically require
at least two program executions. The first run gathers profiling data to identify the
ROIs for simulation. Subsequently, the second execution simulates the selected ROIs.
Profile-based sample selection methodologies assume identical program behavior across
executions, which is difficult to guarantee, especially for multi-threaded programs. Het-
erogeneity in hardware environments (for instance, varying ISA support leading to scalar
vs. vectorized runs), inconsistencies in system libraries, and timing-dependent control
flow (for example, work stealing in parallel applications) can all introduce discrepancies

between profiling and simulation runs.

Several works have been proposed to ensure repeatable program execution during pro-
filing and simulation. PinPlay [77] utilizes a record-and-replay framework, guaranteeing
identical behavior across analyses by capturing the entire program execution and then
performing profiling/simulation using a deterministic replay. However, PinPlay’s replay
incurs significant overhead (= 50x slowdown), rendering performance counter-based
evaluation inaccurate. Other efforts to improve repeatability include using static bina-
ries, checkpoints [249], or ELFies [47]. However, none of these techniques guarantee fully
repeatable execution, particularly in multi-threaded scenarios where timing-dependent

control flow and the resulting execution divergence happen more often [73, 124].

While ROlIperf leverages native program execution to validate the samples or ROI, we
acknowledge the inherent challenge of guaranteeing perfect repeatability across runs.
However, the effects of this challenge can be minimized by executing both the sample
selection and ROIperf measurements in a strictly controlled environment. We describe
tests for the applicability of ROIperf prior to the measurement in Section 7.5. In our
evaluations, we find that ROIperf is effective in identifying the regions accurately in

most cases.

7.1 Introduction 155

Workload
Workload

Sampling Error

Performance

E Sample

! Selection ; ROIperf

Region
Performance

Regions of Extrapolate

Interest

Figure 7.2: An overview of the working of ROIperf framework to validate the regions
of interest (ROIs). The performance of the full workload and the ROIs are measured on
the native hardware. The extrapolated performance is compared with the performance
of the full runs to quantify the sampling error.

Contributions and Organization of the Chapter
To summarize, the chapter makes the following contributions:

1. We introduce ROlIperf, a framework designed to rapidly evaluate the effectiveness
of workload sampling methodologies. We demonstrate its application in validating
regions of interest (ROIs) for long-running single-threaded, and multi-threaded

workloads.

2. We leverage previously proposed PinPoints [24] (for single-threaded programs)
and LoopPoint [8] (for multi-threaded programs) methodologies for ROI selection.
Both methodologies rely on profiling based on deterministic replay [77] for region

selection.

3. We also introduce sanity tests (detailed in Section 7.5.1) to assess reproducibility
and identify extreme deviations in control flow in program execution. For accurate
ROI validation, achieving identical control flow between the ROIperf run and the

profiling run used for ROI selection is essential.

4. We will open-source the ROIperf infrastructure for use in the community, enabling
the sample validation of large, realistic applications at near-native speeds, which

was not possible before.

156 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

The rest of the chapter is organized as follows. In Section 7.2, we discuss the background
on workload sampling methodologies and techniques for sample validation. Section 7.3
presents the ROIperf methodology and implementation details. We then describe the
experimental infrastructure in Section 7.4, followed by an extensive evaluation of ROIperf
in Section 7.5 to demonstrate the applicability of the proposed methodology. Finally,
we present the related work in Section 7.6 and conclude the chapter in Section 7.7 with

some possible future directions.

7.2 Background

In this section, we provide a background on the existing workload sampling techniques,
particularly those leveraged in this chapter for sample selection. We also provide an

overview of previously proposed sample validation techniques.

7.2.1 Sample Selection Methodologies

SimPoint [20] and SMARTS [2] are two well-established techniques for sampling single-
threaded applications to accelerate simulation. SimPoint is a profile-driven methodology
that identifies representative regions for simulation, whereas SMARTS employs statisti-
cal sampling for fast simulation. We employ SimPoint to select representative regions of

single-threaded applications.

Accurately sampling multi-threaded workloads presents a significant challenge. Applying
naive extensions of single-threaded techniques directly proves ineffective due to factors
like thread interactions and spin-loops [31]. There are several techniques proposed to
sample multi-threaded workloads [8, 30, 32, 33, 34], each having its own limitations, as
discussed in Chapter 2. In this chapter, we evaluate LoopPoint [8] methodology that
applies to generic multi-threaded workloads. LoopPoint identifies regions bounded by

loop entries and can achieve high simulation speedups without compromising on sampling

7.2 Background 157

accuracy.

7.2.2 Sample Validation

Validating the representative regions identified for a large application can be tedious.
This typically requires the full simulation of the application and the representative re-
gions. While FPGA-based simulation infrastructures like FireSim [50] offer faster exe-
cution compared to traditional cycle-level software simulators, their turnaround time is
still not negligible. Moreover, the hardware implementation of each component within

the limited memory of the FPGAs is challenging.

Perelman et al. [21] propose a technique to select statistically valid representative regions
early in the application to reduce the fast-forward time to reach the simulation regions.
Gottschall et al. [250] propose SimPoint validation with TraceDoctor, an instrumentation
framework attached to FireSim. This technique can be used to validate SimPoints for
a RISC-V model running on FPGAs at high speeds. While significantly faster than
detailed simulation, it remains slower than hardware validation and is limited to FPGA-

based models.

7.2.3 Hardware Performance Counters

Modern microprocessors have special hardware registers called hardware performance
counters for monitoring various performance-related metrics [66]. These counters pro-
vide the ability to measure performance in real-time and are typically used by software
performance tools to measure metrics like the number of instructions executed, cache
misses, page faults, etc [251]. By measuring these metrics, performance tools can help
developers identify bottlenecks and other performance issues in their software. Because
these counters are built into the hardware, they are able to provide measurements of

performance-related metrics with very low overhead.

158 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

7.2.4 Instrumentation using Pin

Pin [116] is a well-known dynamic instrumentation and analysis framework for x86 ap-
plications. It offers an application programming interface (API) for adding extra code
at various points within a program. The API differs based on the mode specified during
Pin initialization. Pin supports two modes: (a) a just-in-time (JIT) mode which trans-
lates the test program in memory and adds instrumentation during the translation, and
(b) a probe mode which merely patches an in-memory copy of the program with extra
code. The JIT mode API allows for sophisticated run-time analyses but at the cost
of translation overhead. The probe mode API is limited to adding extra code only at
specific program points, although the overhead of such an addition is very low. ROIperf
leverages Pin in probe mode due to its low overhead, which minimizes perturbation

during performance measurement of the target application.

7.3 Methodology and Implementation Details

This section describes the implementation details of the ROIperf methodology. We will
further present and compare the usage models of the methodology for single-threaded

and multi-threaded applications.

7.3.1 ROI Selection using Sampling

To select representative regions of interest (ROIs), we employ phase-based and loop-
based approaches. For single-threaded applications, we leverage the PinPoints method-
ology [24]. This method builds upon SimPoint methodology [20] where an application
is profiled to generate basic block vectors at every execution slice (indicating unit of
work), and the resulting vectors are clustered to identify multiple phases in the applica-
tion. A representative ROI is chosen for each phase, weighted proportional to the size

of the phase it represents. Similarly, we use LoopPoint methodology [8] to identify the

7.3 Methodology and Implementation Details 159

representative ROIs of multi-threaded applications. LoopPoint demarcates application
regions based on loop iterations (instead of instruction counts) and clusters these regions
to select ROIs. The ROIs are then used to guide architectural simulations. However,
this approach relies on the assumption that the execution of ROIs can be reproduced

precisely during the simulation as they were during profiling.

7.3.2 ROI Specification

The evaluation using ROIperf considers program repeatability to ensure ROIs remain
representative. However, single-threaded programs can often exhibit non-repeatable be-
havior [77]. One of the main reasons for this behavior is the differences in the microar-
chitecture that are used for profiling and performance measurements. Other reasons
include changes in shared library versions and memory allocation patterns (load and
stack locations). To address this and maintain ROI validity, ROIperf enforces identical
shared libraries and memory allocation during measurement as observed during profil-
ing. For example, the loading addresses of the shared libraries and the starting address
of their stacks should remain the same. On Linux, this can be achieved by temporarily

disabling Address Space Layout Randomization (ASLR).

A single-threaded ROI can be simply represented by the retired instruction count at the
beginning and the end of the region. As long as regions are repeatable, ensured by using
fixed shared libraries and by turning off ASLR, capturing hardware performance counter
values at ROI boundaries is sufficient for performance projection (Figure 7.3) of single-
threaded programs. For single-threaded programs, an ROI can be represented by the
retired instruction count at the beginning and end of the region. Assuming repeatable
program execution (achieved through fixed shared libraries and similar microarchitec-

ture), capturing hardware performance counter values at ROI boundaries suffices for

This can typically be done globally by modifying /proc/sys/kernel/randomize_va_space, or on a
per-process basis by prepending the command line with setarch x86_64 --addr-no-randomize.

160 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

performance measurements (as shown in Figure 7.3). For multi-threaded programs, a
major source of non-repeatability is the timing and behavior of thread synchronization
[31, 73, 77]. Instruction counts are, therefore, not a reliable way to specify ROI bound-
aries. The LoopPoint methodology [8] guarantees ROI repeatability by selecting units
of work that begin and end at worker loop entries to avoid synchronization overhead
and ensure consistent behavior across executions. LoopPoint defines ROIs using pairs
of (PC, count), where PC represents the program counter address of the corresponding
worker loop entry and count signifies the number of loop iterations. This approach en-
sures the invariant nature of worker loops to establish reliable ROI boundaries across

executions.

7.3.3 ROI Handling in ROIperf

ROIperf aims to capture relevant hardware performance counter values at the bound-
aries of each region of interest (ROI). It achieves this by leveraging the Linux function
perf_event_open() to program specific hardware performance counters. The required
performance counters can be specified through an environment variable ROIPERF -
LIST. This variable expects a comma-separated list of number pairs in the format
perftype:counter. Here, perftype indicates the counter type (0 for hardware, 1 for soft-
ware). The specific counter selection is based on values defined within the Linux header
file /usr/include/linux/perf_event.h. For example, the perftype:counter pair 0:0
corresponds to hw__cpu__cycles (hardware counter for CPU cycles), while 1:2 refers to

sw__page__faults (software counter for page faults).

ROIperf operates on an application along with its designated ROIs, as detailed in Fig-
ure 7.2. ROIperf utilizes two primary methods to program hardware performance coun-
ters: (a) sampled counting of retired instructions or program counters and (b) continu-
ous monitoring of performance counters specified with ROIPERF LIST. The sampled

counting is programmed using an overflow value and a callback function. When using

7.3 Methodology and Implementation Details 161

Program Start Program End
Region Start 1 1Region End

Program execution

Region of interest
{(ROY);

counter_start counter_end
icount or (PC,count) icount or (PC,count)

i
: |
! 1
: :
i User-specified counters (ROIPERF PERFLIST) E

Figure 7.3: The high-level execution flow of an application using the ROIperf tool.
Upon program start, user-defined performance counters are initialized. Measurements
are then activated at the start of ROI and remain active until the end of ROI. Hardware
instruction counts or address (PC) counts are employed to identify the ROI.

instruction count-based ROIs, two counters monitor user-mode PERF _COUNT _HW_-
INSTRUCTIONS, with overflow values set to the start and end instruction counts of the
ROI. Upon overflow, the callback function triggers, capturing the current system-wide
time using the Read Time-Stamp Counter (RDTSC) and the values of all the perfor-
mance counters programmed for continuous monitoring (defined by the ROIPERF_LIST
environment variable). This continuous monitoring mode allows tracking performance
counters specified in ROIPERF _LIST alongside sampled counting. An illustration of

these various actions taken by ROIperf can be found in Figure 7.3.

For ROIs defined by program counter (PC) and count values, a different approach is
employed. Here, two counters with perftype set to PERF TYPE BREAKPOINT tar-
get the start and end PCs of the ROI. The overflow values are set to the corresponding
count values specified for the ROI boundaries. Similar to sampled counting, the callback
function upon overflow outputs RDTSC values and the values of performance counters

from ROIPERF LIST.

Our experiments revealed a significant performance difference between the techniques for
programming performance counters used in ROIperf. While PERF COUNT _HW_ -
INSTRUCTIONS with overflow handling proved highly efficient across all tested x86
processors, PERF TYPFE BREAKPOINT exhibited higher overhead. This overhead

162 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

derives from the operating system trapping into the kernel on every execution of the
programmed PC to check for overflow using a software counter. This frequent trapping
can significantly perturb performance measurements, especially for ROIs with frequently

executed PCs.

To address this trade-off, we propose a hybrid approach for ROI specification. We rec-
ommend using PERF TYPE BRFEAKPOINT only for the ROI start, leveraging its
precise triggering mechanism. For the ROI end, we suggest employing a relative instruc-
tion count-based PERF _COUNT_HW __INSTRUCTIONS approach. This combination
prioritizes a precise start point while achieving faster monitoring for the ROI end (albeit
slightly imprecise, particularly for multi-threaded scenarios). Since ROIperf ultimately
focuses on the performance measurements between the start and end of the ROI, this

approach offers an acceptable solution.

ROIperf exhibits limitations when dealing with multi-threaded programs, as it focuses
on monitoring only the main thread (thread 0). Hence ROIperf starts hardware perfor-
mance counters for the core/processor where the main thread is running. Pin in probe
mode cannot monitor thread creation events. Consequently, there is no callback to
ROIperf when child threads are spawned during program execution. Therefore ROIperf
cannot monitor any children threads in a multi-threaded program. While ROIperf can-
not directly monitor child threads, the captured RDTSC values still reflect the total
execution time for the entire ROI, including the work done by child threads. This ap-
proach hinges on the assumption that the main thread remains active throughout the
ROIs, which means the counters specified using ROIPERF _PERFLIST will be counted

for the core/processor where the main thread is active.

7.4 Experimental Setup 163

7.4 Experimental Setup

7.4.1 Workloads Used

We use two benchmarks for our evaluation, SPEC CPU2017 and NAS Parallel Bench-
marks (NPB). For our single-threaded evaluations, we use the rate version of SPEC
CPU2017 benchmarks using training (train) inputs and reference (ref) inputs. For our
multi-threaded evaluations, we use the multi-threaded subset of SPEC CPU2017 bench-
marks (speed version). These benchmarks can spawn several threads that synchronize
and share memory. We configure the benchmarks with eight OpenMP threads. We also
use NPB version 3.3 (OpenMP-based) for our multi-threaded evaluations that are con-
figured to Class C inputs with eight threads. We present the evaluation results for all but
dc (data cube) benchmark in the NPB benchmark suite as it generates a huge amount of
data. We use active thread wait-policy for evaluating the SPEC CPU2017 benchmarks,
which means that the threads spin (user-level) at the synchronization point, whereas
passive policy is used for the NPB benchmarks for which the threads go to sleep while

waiting for the other threads at a synchronization point.

7.4.2 Sample Selection

For single-threaded sampling, we use PinPlay-based profiling methodologies involving
the PinPoint [24] tool, derived from the SimPoint [20] methodology. We split the ap-
plication every 200 million instructions. We also use a maxk of 50 for k-means clus-
tering. For sampling multi-threaded applications that use eight threads, we use the
LoopPoint methodology [149] with default settings. We split the applications target-
ing multi-threaded regions of size 800 million global (all-threads) instructions, always
aligning with a loop entry. The regions are represented as basic block vectors (BBVs),

clustered using k-means clustering with a maxk of 50. PinPlay processing, especially

164 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

logging, is quite expensive, and therefore, running region selection in a controlled envi-
ronment was not practical. Instead, region selection was done on machines with varying
microarchitectures and run-time libraries. But, in an ideal case, we are required to (a)
run all the experiments (region selection, simulation, ROIperf validation, etc.) on the
same microarchitecture and (b) package and reuse the system libraries so that we are
sure we control the simulation. For ROIperf-based evaluations, we chose two machines

with Broadwell and Skylake microarchitectures.

7.4.3 Simulators Used

We compare the effectiveness of ROIperf in sample validation against performance eval-
uation using simulators. For our experiments with the SPEC CPU2017 benchmarks,
we use an in-house simulator derived from Sniper [14], called CoreSim, for evaluations.
CoreSim allows for rapid yet fairly accurate simulation of x86 many-core systems that use
Intel SDE [227] as the simulation front-end. We configured CoreSim to simulate both
Intel Skylake [157] and Intel Cascade Lake [220] microarchitectures. We also use the
Sniper multi-core simulator [14, 252] version 8.0 (using Pin [116] front-end) for our eval-
uations with NPB benchmarks. We configured Sniper to simulate the Intel Gainestown

microarchitecture.

7.5 Evaluation

In this section, we aim to demonstrate the effectiveness of the ROIperf methodology

across different benchmarks.

7.5.1 Testing ROIperf Applicability

As discussed in Section 7.1, the repeatability of application results can be an issue for a

number of applications, both single-threaded and multi-threaded. For our evaluations,

7.5 Evaluation 165

we selected the applications that were not prone to this issue. We devised a pre-test for

the applications for repeatability, which is two-fold:

1. Do the thread-0 instruction counts from the region selection and ROlIperf runs

exhibit a close match?

The cases where we found a difference of more than 10% were ruled out from
ROIperf evaluations. This test works well for single-threaded applications. For
multi-threaded programs, where run-to-run variation is expected due to different

amounts of synchronization code, the instruction count test may not be adequate.

2. Are the regions described using (PC, count) specifications executed on the test ma-

chine?

We tested this with a Pin-based tool to report ROI start and end events based on
(PC, count) ROI specification. If the ROIs are not being executed, this implies
subtle control flow diversion between the region selection and ROIperf runs. Any

cases with a substantial number of ROIs missed were ruled out.

We demonstrate the ROIperf methodology using simulation-based region validation as
the base case and compare the prediction errors reported by the simulation to those
reported by ROIperf. ROlIperf enables quick fine-tuning of sampling parameters for
existing sampled simulation techniques like SimPoint or LoopPoint. We perform this
study for relatively shorter train input for SPEC CPU2017 runs as the simulation of ref

inputs is otherwise not practical.

7.5.2 Evaluation of Single-threaded Applications

We use the rate setup from SPEC CPU2017 benchmarks. The binaries used were com-
piled using GCC to use the AVX vector instructions. The simulator used was, CoreSim,

an SDE-based simulator modeling an Intel Skylake processor. ROIperf evaluations were

166

ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

HE sim:runtime I roiperfibroadwell I roiperfiskylake

c\:10'

=}

£ 81

o

=

2 61

2

i

g

FIEY

<
0.

P L CIR P I G BRI ST O O R P e

an/ Qa@/ Qa@/ Qag\/ &x\/ ng/ &7 ng/ (\‘é/ &Q/ ,-»‘ob‘/ é}@/ °g)"\,/ /\‘.‘:\)/ (_"3)/
F o F P @O DTS L T Y e
S R)) > 9 EAEVZ &

N &V oY oY 59 g

PRI S S S o

Figure 7.4: Sampling error in predicting cycles-per-instructions (CPI) for single-
threaded workloads from the SPEC CPU2017 suite using train inputs. The errors were
measured using both a cycle-level simulator and the ROIperf tool running on Broadwell
and Skylake hardware platforms.

abs. RDTSC error%

I roiperf:broadwell B roiperfiskylake

Ll‘Wl J__LI-JITT_lI- 1 lel-

N N

< < > & < < < <

b s &

& z}‘é\ Pou ,,o°°/ s R 0/@("% &&s/ f\ e&’“‘/q\v &Q/\éé/fy & B &Wé@é/cﬁ/ 6&;/\5‘\ ;P‘&“ Qoé"w\\\f’ & 5« 5" ‘;\?M
o ST & SRS o o o o as O R R A A S
£ L& 0 RN N I R AN P O g

MR i R <5 E N 87 o
R S o S 4

Figure 7.5: Sampling error in predicting the RDTSC values of the single-threaded
SPEC benchmarks using ref input.

done

on two test machines, one with a Broadwell processor and another with a Sky-

lake processor. The region selection was done using the PinPoints methodology with a

slice-size of 200 million instructions and a maximum cluster count (maxk) of 50.

7.5.2.1 SPEC CPU2017 with train input

We first simulated the binaries running train input with CoreSim in two ways: (a) for the

entire program execution and (b) once each for each ROI selected by PinPoints (specifi-

cation based on instruction count). Prediction error for each benchmark was computed

7.5 Evaluation 167

using the simulated runtime, full program, and region projected. The longest-running
full-program simulation took five weeks to finish. We then used ROIperf using the exact
region specification and found prediction errors on two different test machines, one with
a Broadwell x86 processor and another with a Skylake x86 processor. We evaluated
ROIperf with the full-program and each region and computed prediction error based on
cycles-per-instruction (CPI) values reported as shown in Figure 7.2. The measurement
was repeated several times, and the average values were considered. The entire eval-
uation took a few hours, which is a significant improvement over the simulation-based
validation methodology. Figure 7.4 reports the prediction errors for simulation and
ROIperf-based validation. We see that while the absolute prediction error values differ,
the trends in prediction errors are the same between simulation-based and ROIperf-based
validation. This gives us confidence in using ROIperf as a much faster alternative to

simulation-based ROI validation.

7.5.2.2 SPEC CPU2017 with ref input

SPEC CPU2017 runs with ref input are much longer running compared to train input
runs. Simulation-based validation for ref input is therefore not practical as it would take
a number of months to finish full-program ref runs simulations with CoreSim. This is
where ROIperf-based simulation adds value. Since we are using native hardware as the
simulator, the evaluation times are much shorter. Figure 7.5 reports the prediction errors
for ROIperf-based validation of SPEC CPU2017 ref input runs on running Broadwell
and Skylake servers. ROIperf applicability testing (Section 7.5.1) revealed a significant
variation (>15%) in the instruction count between the native run on the test machine and
the profiling run. On the Skylake machine, all runs of 503.bwaves_r showed more than
50% difference between instruction count during profiling and during ROIperf run. We
observed the Skylake machine happened to have a different version of the math library

than the Broadwell machine, and the code executed on the two machines was quite

168 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

different, as measured by the instruction mixes on both machines. Security updates often
add input checks that can lead to significant slowdowns. For example, the libm library
on the Broadwell machine uses an optimization that removed the canonical input check

from pow(), which led to a 2.4x reduction in the instruction count for 503.bwaves_r.

7.5.3 Evaluation of Multi-threaded Applications

Evaluating synchronizing multi-threaded applications can be quite challenging [31]. Tools
like PinPlay [3] offer deterministic analysis of multi-threaded applications. While using
ROIperf, we estimate the performance using native hardware. For multi-threaded evalu-
ation, we used the OpenMP subset of the speed version of SPEC CPU2017 benchmarks.
The regions of interest (ROIs) of the benchmarks were selected using LoopPoint method-

ology using the settings as described in Section 7.4.2.

7.5.3.1 SPEC CPU2017 with train input

Figure 7.6 shows a comparison between the RDTSC prediction error using ROIperf
and runtime prediction error using CoreSim. The ROIs were simulated on CoreSim
with Cascade Lake microarchitecture specifications. We use 8-threaded SPEC CPU2017
benchmarks that use train inputs for this evaluation. The benchmarks use active thread
wait policy. We can observe very similar trends in the estimation errors, especially for

applications like 627 .cam4_s.1.

7.5.3.2 NPB using Class C inputs

We repeat the comparison of prediction errors from ROIperf and simulation for NAS
Parallel Benchmarks (NPB) Class C input size. Figure 7.7 shows the runtime prediction
errors obtained from simulation (Sniper:Gainestown), and prediction errors for user-level

hardware CPU cycles and RDTSC using ROIperf. Again the error bars show similar

The results shown here have been filtered to exclude these specific cases.

7.6 Related Work 169

HEl sim:runtime EEE roiperfirdtsc

ES
o
5
101
S
el
=
2 s
%)
=)
<

0-

P 2P AT T 6 o o T oF oF af oF Wf W

q,“q‘ %4@ %% ®<~‘ & & o~ %o & &0 ST AT A

& & 97 & AaF¥ ¥ N & @

NSO N O S AT A RN ~ o < Al
& & S © RGPS SHEE
DN @ ®

$ ¢
§

Figure 7.6: A comparison of RDTSC estimation error using ROIperf and runtime
estimation error using CoreSim simulator. The benchmark suite is SPEC CPU2017,
and the benchmarks use 8 threads, train inputs, and active wait policy. The ROIs are
identified using LoopPoint methodology.

I sim:runtime I roiperficycles B roiperfirdtsc

abs. prediction error%

bt.C cg.C ep.C ft.C is.C lu.C mg.C sp.C ua.C

Figure 7.7: A comparison of simulation-based prediction errors with ROIperf results
for both HW__CPU__CYCLES and RDTSC projections on a Skylake Server. We use
NPB benchmarks that use Class C inputs, 8 threads and passive wait policy.

trends which signify the reliability of the results obtained using ROIperf.

7.6 Related Work

The overhead of the Linux perf event counter interface that ROIperf uses is described
in prior works [253]. ROIperf uses the self-monitoring interface as described earlier and
hence is prone to various overheads, namely overheads for performance counter starting,

reading, reading multiple times, and stopping. The paper suggests turning off dynamic

170 ROlperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies

frequency scaling to avoid affecting the RDTSC instruction results. We did that for our
test machines. They also suggest using static linking to avoid dynamic link overhead of

the read () system call used to read performance counters.

In PinPoints [24], simulation regions selected for SPEC2000 Itanium programs using
SimPoint [20] were validated against hardware performance metrics. For evaluation, a
JIT-mode Pin tool was used to run until the start of the ROI, determined by instruction
count. After detaching from the application, the remaining execution was profiled using
a performance monitoring Linux tool, sampling hardware performance counters at slice-
size intervals. Unlike PinPoints, ROIperf does not detach from the application. This
allows for more precise ROI boundary monitoring, especially when using (PC, count)
specifications. ROlperf also supports variable-sized ROIs for both single-threaded and

multi-threaded programs.

7.7 Conclusion

We introduce ROIperf, a technique to validate workload sampling methodologies. ROIperf
leverages hardware performance counters to validate the representativeness of chosen
samples, which can be used in several ways to study the workload characteristics, core
interactions, cache behavior, etc., without requiring a simulator. ROIperf facilitates the
validation of workload sampling methodologies for large-scale workloads like the SPEC
CPU2017 benchmarks with reference inputs. Our analyses show that the reproducibil-
ity of program behavior across multiple executions is a prerequisite for obtaining stable
measurements. Simulators provide a controlled environment for performance estimation
and, especially in the case of multi-threaded applications, control the thread progress.
ROlIperf could be extended to support compatibility beyond specific hardware platforms,

particularly towards the increasingly heterogeneous nature of modern applications.

Chapter

Conclusion and Future Work

In this chapter, we present a summary of the contributions of this thesis and lay out the

potential directions for future work.

8.1 Conclusion

There’s no real ending. It’s just the place where you stop the story.

— Frank Herbert

The thesis explores novel techniques for efficiently evaluating the performance of post-
Dennard systems using sampling. We first proposed LoopPoint, a sampled simulation
methodology that significantly reduces the simulation time of large general-purpose
multi-threaded workloads. LoopPoint methodology is integrated with widely used mi-
croarchitectural simulators like gem5 and Sniper. A follow-up work, Viper, enhanced the
accuracy and speed of LoopPoint by considering the hierarchical structure of program
execution. LoopPoint is effective for microarchitecture-level simulations, while Viper is
suitable for finer granularity in RTL-level simulations. Both these methodologies are

applicable only to static workloads. Existing sampled simulation methodologies are con-

172 Conclusion and Future Work

sidered insufficient for assessing the dynamic nature of evolving architectures. These
architectures integrate several runtime optimization techniques at both hardware and
software levels to enhance system performance. We proposed Pac-Sim, which is de-
signed for dynamically optimized software and hardware by performing region selection
and analysis online. Pac-Sim accurately evaluates dynamically scheduled multi-threaded
applications, accounting for runtime performance variability. The growing need for high-
performance computing (HPC) and artificial intelligence (AI) has driven the adoption
of heterogeneous computing systems that integrate diverse processing cores like CPUs
and GPUs. However, evaluating the performance of these systems remains a significant
challenge, often requiring substantial time and resources. To address this, we intro-
duce XPU-Point, a novel methodology designed to identify representative regions within
heterogeneous CPU-GPU applications. While workload sampling techniques identify
regions of interest within applications, their performance is typically validated using
simulations, which can still be time-consuming. However, validating the performance of
a selected sample against the full application is crucial. To address this, we proposed
ROIperf, which leverages native hardware performance counters, providing a quick and
accurate method to validate the representativeness of the regions of interest selected for

long-running workloads.

8.2 Future Work

We can only see a short distance ahead, but we can see plenty

there that needs to be done.
— Alan Turing

In this thesis, we addressed the significant challenge that arises due to the performance
disparity between hardware and its corresponding simulators. This bottleneck signifi-

cantly hinders the design space exploration for increasingly complex systems.

8.2 Future Work 173

While workload sampling, explored in this thesis, offers a solution by focusing on rep-
resentative subsets of the workload, it represents just one direction for further research.
Future investigations to explore complementary techniques for faster simulation include
hardware emulation techniques, GPU-based simulations, analytical models, etc. We

outline a few such directions below:

1. The characterization of emerging real-world workloads presents a significant chal-
lenge. With the increasing complexity of these workloads, like those found in mo-
bile and data center environments, the methodologies proposed in this thesis may
be inadequate. While this thesis highlights the potential of Pac-Sim in evaluating
compute-intensive general-purpose workloads, its applicability to other domains,
such as cloud or mobile workload classes, is a promising area of research. Current
approaches to GPU and heterogeneous CPU-GPU sampling, while effective in con-
trolled settings, exhibit limitations when dealing with real-world scenarios, such
as over-subscribed GPUs, dynamic kernels, and multi-GPU configurations. Lever-
aging neural networks for program phase identification presents an alternative for
BBVs or other signature vectors. Their ability to learn from program structure
and runtime states allows for the effective characterization of application regions

independent of the underlying ISA.

2. Accelerating cycle-accurate simulations remains a crucial area of research. The
traditional simulation takes an extremely long time by simulating the entire work-
load on the CPU alone. One approach to speed up simulation involves leveraging
profiling tools to understand the control flow of the workload, which can be used to
optimize the datapath and parallelize the simulation of independent components
across GPUs. In a similar direction, simulating CPU-GPU workloads can be accel-
erated by offloading the GPU kernel simulation onto actual GPUs. However, this

approach may necessitate frequent CPU-GPU synchronization. Additionally, com-

174

Conclusion and Future Work

bining simulators with analytical models of traditional microarchitectural struc-

tures offers another potential for simulation speedups.

While sampled simulation addresses the problem of long simulation times, this
introduces the challenge of warming up the microarchitectural state. Traditional
CPU warmup techniques, such as statistical warming and checkpointing, are un-
available for GPU systems and heterogeneous CPU-GPU systems, whereas func-
tional warming would incur a significant amount of time to be spent on simulations
just for microarchitectural state reconstruction. Leveraging machine learning tech-
niques on statistical profiles of relevant memory access patterns, branch predictor
behavior, and prefetcher accesses could enable the development of sophisticated

microarchitectural warmup methods.

While application checkpointing and deterministic replay have been established
for CPU workloads, extending these techniques to heterogeneous CPU-GPU envi-
ronments presents a significant research opportunity. For CPU workloads, ELFies
offer a widely adopted solution for capturing application state through executable
checkpoints. However, ELFies do not capture the system state, and system-level
checkpointing techniques using QEMU are essential to capture the entire system

state for accurate full-system simulation.

";{e,tﬁaugﬁt he Kept the universe alone;

For all the voice in answer he could wake
Was but the mocKing echo of his own
From some tree-hidden cliff across the laKe.
Some morning from the boulder-broKen beach
He would cry out on life, that what it wants
Is not its own love bacK in copy speech,

But counter-love, original response.

Robert Frost

Bibliography

SPEC CPU®2017 documentation index. http://spec.org/cpu2017/Docs/
index.html.

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.
SMARTS: Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In International Symposium on Computer Architecture (ISCA), pages 84-97,
June 2003.

Harish Patil and Trevor E. Carlson. Pinballs: portable and shareable user-level
checkpoints for reproducible analysis and simulation. In Workshop on Reproducible
Research Methodologies (REPRODUCE), February 2014.

Ferenc Bodon and Lajos Roényai. Trie: an alternative data structure for data
mining algorithms. Mathematical and Computer Modelling, 38(7-9):739-751, 2003.
Kenneth C Barr, Heidi Pan, Michael Zhang, and Krste Asanovic. Accelerating
multiprocessor simulation with a memory timestamp record. In International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages 66-77,
March 2005.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

http://spec.org/cpu2017/Docs/index.html
http://spec.org/cpu2017/Docs/index.html

178

Conclusion and Future Work

[11]

[12]

[13]

[14]

Hill, and David A. Wood. The gemb simulator. SIGARCH Computer Architecture
News, 39(2):1-7, August 2011.

Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. Accel-
sim: An extensible simulation framework for validated gpu modeling. In Interna-
tional Symposium on Computer Architecture (ISCA), pages 473-486. IEEE, 2020.
Alen Sabu, Harish Patil, Wim Heirman, and Trevor E. Carlson. LoopPoint:
Checkpoint-driven sampled simulation for multi-threaded applications. In Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
604-618, 2022.

G. E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEFE Solid-State
Circuits Society Newsletter, 2006.

Shekhar Borkar. Thousand core chips: a technology perspective. In Design Au-
tomation Conference (DAC), pages 746749, 2007.

Anant Agarwal and Markus Levy. The kill rule for multicore. In Proceedings of
the 44th annual Design Automation Conference, pages 750-753, 2007.

Eric S Chung, Peter A Milder, James C Hoe, and Ken Mai. Single-chip hetero-
geneous computing: Does the future include custom logic, fpgas, and gpgpus? In
International Symposium on Microarchitecture (MICRO), pages 225-236. IEEE,
2010.

Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, But-
ler W Lampson, Daniel Sanchez, and Tao B Schardl. Theres plenty of room
at the top: What will drive computer performance after moores law? Science,
368(6495):eaam9744, 2020.

T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level of ab-

straction for scalable and accurate parallel multi-core simulation. In International

BIBLIOGRAPHY 179

[15]

[16]

[17]

[19]

[21]

[22]

Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 52:1-52:12, November 2011.

R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.
IFEEFE Journal of Solid-State Clircuits, 1974.

Changxi Liu, Yifan Sun, and Trevor E. Carlson. Photon: A fine-grained sampled
simulation methodology for gpu workloads. In International Symposium on Mi-
croarchitecture (MICRO), page 12271241, 2023.

Murali Annavaram, Ryan Rakvic, Marzia Polito, J-Y Bouguet, Richard Hankins,
and Bob Davies. The fuzzy correlation between code and performance predictabil-
ity. In International Symposium on Microarchitecture (MICRO), pages 93-104,
2004.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correla-
tion between code signatures and performance. In IEEFE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2005.

Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications. In Inter-
national Conference on Parallel Architectures and Compilation Techniques, pages
3-14, 2001.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automati-
cally characterizing large scale program behavior. In International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 45-57, October 2002.

Erez Perelman, Greg Hamerly, and Brad Calder. Picking statistically valid and
early simulation points. In International Conference on Parallel Architectures and
Compilation Techniques, pages 244-255, 2003.

Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and pre-

180

Conclusion and Future Work

23]

[24]

[26]

[29]

[30]

diction. In International Symposium on Computer Architecture (ISCA), pages
336-349, 2003.

Greg Hamerly, Erez Perelman, and Brad Calder. How to use SimPoint to pick
simulation points. ACM SIGMETRICS Performance Evaluation Review, 31(4):25-
30, March 2004.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pin-
pointing representative portions of large Intel Itanium programs with dynamic in-
strumentation. In International Symposium on Microarchitecture (MICRO), pages
81-92, December 2004.

Jeremy Lau, Erez Perelman, Greg Hamerly, Timothy Sherwood, and Brad Calder.
Motivation for variable length intervals and hierarchical phase behavior. In Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 135-146, March 2005.

Jeremy Lau, Erez Perelman, and Brad Calder. Selecting software phase markers
with code structure analysis. In International Symposium on Code Generation and
Optimization (CGO), pages 135-146, March 2006.

Sina Hassani, Gabriel Southern, and Jose Renau. LiveSim: Going live with mi-
croarchitecture simulation. In International Symposium on High Performance
Computer Architecture (HPCA), pages 606-617, March 2016.

M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to guide
simultaneous multithreading simulation. In IEEE International Symposium on -
ISPASS Performance Analysis of Systems and Software, 2004, March 2004.
Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and James C. Hoe. Tur-
boSMARTS: Accurate microarchitecture simulation sampling in minutes. In In-
ternational Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS). ACM, 2005.

T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

BIBLIOGRAPHY 181

[31]

32]

[35]

[36]

[38]

Hoe. SimFlex: Statistical sampling of computer system simulation. IEEE Micro,
26(4):18-31, 2006.

A.R. Alameldeen and D.A. Wood. IPC considered harmful for multiprocessor
workloads. IEEE Micro, 26(4):8-17, 2006.

T. E. Carlson, W. Heirman, and L. Eeckhout. Sampled simulation of multi-
threaded applications. In International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 212, April 2013.

E. K. Ardestani and J. Renau. ESESC: A fast multicore simulator using time-based
sampling. In International Symposium on High Performance Computer Architec-
ture (HPCA), pages 448-459, February 2013.

T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout. BarrierPoint:
Sampled simulation of multi-threaded applications. In International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 2-12, March
2014.

Stijn Eyerman and Lieven Eeckhout. Fine-grained dvfs using on-chip regulators.
ACM Transactions on Architecture and Code Optimization (TACO), 8(1):1-24,
2011.

Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret
Martonosi. An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In International Symposium
on Microarchitecture (MICRO), pages 347-358, 2006.

Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In International
Symposium on High Performance Computer Architecture (HPCA), pages 123-134,
2008.

Sparsh Mittal, Zhao Zhang, and Jeffrey S Vetter. Flexiway: A cache energy saving

182

Conclusion and Future Work

[39]

[40]

[41]

[43]

[44]

[45]

[46]

[47]

technique using fine-grained cache reconfiguration. In International conference on
computer design (ICCD), pages 100-107. IEEE, 2013.

Sparsh Mittal, Yanan Cao, and Zhao Zhang. Master: A multicore cache energy-
saving technique using dynamic cache reconfiguration. IEEE Transactions on very
large scale integration (VLSI) systems, 22(8):1653-1665, 2013.

D.H. Albonesi. Selective cache ways: on-demand cache resource allocation. In
International Symposium on Microarchitecture (MICRO), pages 248-259, 1999.
James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra Fe-
dorova. Evaluation of the intel® core i7 turbo boost feature. In IEEFE International
Symposium on Workload Characterization (IISWC), pages 188-197. IEEE, 2009.
Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesus Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. Ompss: a proposal for programming hetero-
geneous multi-core architectures. Parallel processing letters, 21(02):173-193, 2011.
T. Grass, A. Rico, M. Casas, M. Moreto, and E. Ayguadé. TaskPoint: Sampled
simulation of task-based programs. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 296-306, April 2016.

T. Grass, T. E. Carlson, A. Rico, G. Ceballos, E. Ayguadé, M. Casas, and
M. Moreto. Sampled simulation of task-based programs. Transactions on Com-
puters (TC), 68(2):255-269, 2019.

Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S Lee. Tbpoint:
Reducing simulation time for large-scale gpgpu kernels. In International Parallel
and Distributed Processing Symposium (IPDPS), pages 437-446. IEEE, 2014.
Cesar Avalos Baddouh, Mahmoud Khairy, Roland N Green, Mathias Payer, and
Timothy G Rogers. Principal kernel analysis: A tractable methodology to simulate
scaled gpu workloads. In International Symposium on Microarchitecture (MICRO),
pages 724-737, 2021.

Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, Ali Hajiabadi, and

BIBLIOGRAPHY 183

[48]

[51]

[52]

[53]

Trevor E Carlson. ELFies: Executable region checkpoints for performance analysis
and simulation. In International Symposium on Code Generation and Optimiza-
tion (CGO), pages 126-136, February/March 2021.

Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, et al. Towards developing high performance risc-
v processors using agile methodology. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1178-1199. IEEE, 2022.

W Snyder. Verilator: the fast free verilog simulator. URL: http://www. veripool.
org, 2012.

S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz,
J. Bachrach, and K. Asanovic. FireSim: FPGA-accelerated cycle-exact scale-out
system simulation in the public cloud. In International Symposium on Computer
Architecture (ISCA), pages 29-42, June 2018.

Jeremy Lau, Stefan Schoemackers, and Brad Calder. Structures for phase classi-
fication. In IEEFE International Symposium on-ISPASS Performance Analysis of
Systems and Software, 2004, pages 57-67. IEEE, 2004.

E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and C. Dulong.
Detecting phases in parallel applications on shared memory architectures. In In-
ternational Parallel Distributed Processing Symposium (IPDPS), April 2006.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Applied
machine learning at facebook: A datacenter infrastructure perspective. In Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
620-629. IEEE, 2018.

TOP500. Top500 supercomputer sites. https://www.top500.org/, 2022. Ac-
cessed on November 16, 2022.

https://www.top500.org/

184

Conclusion and Future Work

[55]

[57]

[58]

[59]

[61]

Cen Chen, Kenli Li, Aijia Ouyang, Zhuo Tang, and Keqin Li. Gpu-accelerated
parallel hierarchical extreme learning machine on flink for big data. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 47(10):2740-2753, 2017.
Hai Jiang, Yi Chen, Zhi Qiao, Tien-Hsiung Weng, and Kuan-Ching Li. Scaling up
mapreduce-based big data processing on multi-gpu systems. Cluster Computing,
18:369-383, 2015.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning. In Symposium on Operating
Systems Design and Implementation (OSDI), volume 16, pages 265-283. Savannah,
GA, USA, 2016.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep learning. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 578-594, 2018.
Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk,
Sohaib Sajid, and Martha A Kim. Fast computational gpu design with gt-pin. In
2015 IEEE International Symposium on Workload Characterization, pages 76-86.
IEEE, 2015.

Mahmood Naderan-Tahan, Hossein SeyyedAghaei, and Lieven Eeckhout. Sieve:
Stratified gpu-compute workload sampling. In 2023 IEEE International Sympo-
stum on Performance Analysis of Systems and Software (ISPASS), pages 224-234.
IEEE, 2023.

Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an evaluation

of throughput computing on cpu and gpu. In Proceedings of the 37th annual

BIBLIOGRAPHY 185

international symposium on Computer architecture, pages 451-460, 2010.
Humayun Khalid. Validating trace-driven microarchitectural simulations. IEEE
Micro, 20(6):76-82, 2000.

Qinzhe Wu, Steven Flolid, Shuang Song, Junyong Deng, and Lizy K John. Invited
paper for the hot workloads special session hot regions in spec cpu2017. In 2018
IEEFE International Symposium on Workload Characterization (IISWC), pages 71—
77. IEEE, 2018.

Haiyang Han and Nikos Hardavellas. Public release and validation of spec cpu2017
pinpoints. arXiv preprint arXiv:2112.06981, 2021.

Rajat Todi. Speclite: using representative samples to reduce spec cpu2000 work-
load. In Proceedings of the Fourth Annual IEEE International Workshop on Work-
load Characterization (WWC-4), pages 15-23. IEEE, 2001.

Performance monitoring in the intel 64 and ia-32 architectures software de-
velopers manual, volume 3b. https://www.intel.com/content/www/us/
en/architecture-and-technology/64-ia-32-architectures-software-
developer-vol-3b-part-2-manual.html.

Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In 2008 IEEE
International Conference on Computer Design, pages 397-403. IEEE, 2008.

Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John. Invited paper for the hot
workloads special session hot regions in SPEC CPU2017. In International Sympo-
sium on Workload Characterization (IISWC), pages 71-77, 2018.

Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. Wait of a decade:
Did spec cpu 2017 broaden the performance horizon? In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 271-282.
IEEE, 2018.

Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent workload

characterization. IEEE micro, 27(3):63-72, 2007.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html

186

Conclusion and Future Work

[71]

[72]

73]

[74]

[75]

[76]

[77]

[79]

Yakun Sophia Shao and David Brooks. Isa-independent workload characterization
and its implications for specialized architectures. In 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages
245-255. IEEE, 2013.

Alaa R Alameldeen, Carl J Mauer, Min Xu, Pacia J Harper, Milo MK Martin,
Daniel J Sorin, Mark D Hill, and David A Wood. Evaluating non-deterministic
multi-threaded commercial workloads. In Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), February 2002.

A.R. Alameldeen and D.A. Wood. Variability in architectural simulations of multi-
threaded workloads. In International Symposium on High-Performance Computer
Architecture (HPCA), pages 7-18, February 2003.

Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78-117, 1970.
Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. ACM
SIGPLAN Notices, 39(11):165-176, 2004.

Edward W Forgy. Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. biometrics, 21:768-769, 1965.

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
PinPlay: A framework for deterministic replay and reproducible analysis of parallel
programs. In International Symposium on Code Generation and Optimization
(CGO), pages 2-11, April 2010.

Andreas Sandberg, Nikos Nikoleris, Trevor E. Carlson, Erik Hagersten, Stefanos
Kaxiras, and David Black-Schaffer. Full speed ahead: Detailed architectural simu-
lation at near-native speed. In 2015 IEEFE International Symposium on Workload
Characterization, pages 183-192, 2015.

M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simulation

BIBLIOGRAPHY 187

[80]

[81]

[83]

[84]

[85]

[36]

speed using matched-pair comparison. In International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 89-99, March 2005.
Eduardo Argollo, Ayose Falcén, Paolo Faraboschi, Matteo Monchiero, and Daniel
Ortega. Cotson: infrastructure for full system simulation. ACM SIGOPS Operating
Systems Review, 43(1):52-61, 2009.

Alex Skaletsky, Konstantin Levit-Gurevich, Michael Berezalsky, Yulia Kuznetcova,
and Hila Yakov. Flexible binary instrumentation framework to profile code running
on intel gpus. In 2022 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 109-120. IEEE, 2022.

Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy John, Hai Jin, and
Chengzhong Xu. Accelerating gpgpu architecture simulation. In Proceedings of
the ACM SIGMETRICS /international conference on Measurement and modeling
of computer systems, pages 331-332, 2013.

Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin,
Chengzhong Xu, and Junmin Wu. Gpgpu-minibench: accelerating gpgpu micro-
architecture simulation. IEFEE Transactions on Computers, 64(11):3153-3166,
2015.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith. A mech-
anistic performance model for superscalar out-of-order processors. ACM Transac-
tions on Computer Systems (TOCS), 27(2):1-37, 2009.

S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout. RPPM: Rapid
performance prediction of multithreaded workloads on multicore processors. In
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), pages 257-267, March 2019.

David Eklov and Erik Hagersten. Statstack: Efficient modeling of Iru caches.
In 2010 IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS), pages 55-65. IEEE, 2010.

188

Conclusion and Future Work

[87]

[88]

[89]

[90]

[91]

[94]
[95]

Sander De Pestel, Stijn Eyerman, and Lieven Eeckhout. Micro-architecture in-
dependent branch behavior characterization. In 2015 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages 135-144.
IEEE, 2015.

John W Haskins and Kevin Skadron. Memory reference reuse latency: Accelerated
warmup for sampled microarchitecture simulation. In 2003 IEEE International
Symposium on Performance Analysis of Systems and Software. ISPASS 2003.,
pages 195-203. IEEE, 2003.

Lieven Eeckhout, Yue Luo, Koen De Bosschere, and Lizy K John. Blrl: Accurate
and efficient warmup for sampled processor simulation. The Computer Journal,
48(4):451-459, 2005.

Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E. Carlson. Di-
rected statistical warming through time traveling. In International Symposium on
Microarchitecture (MICRO), pages 1037-1049, October 2019.

Nikos Nikoleris, Andreas Sandberg, Erik Hagersten, and Trevor E Carlson. Cool-
sim: Statistical techniques to replace cache warming with efficient, virtualized
profiling. In 2016 International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation (SAMOS), pages 106-115. IEEE, 2016.
Michael Van Biesbrouck, Brad Calder, and Lieven Eeckhout. Efficient sampling
startup for simpoint. IEEE Micro, 26(4):32-42, 2006.

Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate microarchitec-
tural simulation of thousand-core systems. In International Symposium on Com-
puter Architecture (ISCA), pages 475-486, June 2013.

I Synopsys. Ves—functional verification solution, 2014.

Prasun Gera, Hyojong Kim, Hyesoon Kim, Sunpyo Hong, Vinod George, and Chi-

Keung Luk. Performance characterisation and simulation of intel’s integrated gpu

BIBLIOGRAPHY 189

[96]

[97]

98]

[99]

[100]

[101]

[102]

architecture. In 2018 IEEFE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 139-148. IEEE, 2018.

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2sim: A simulation framework for cpu-gpu computing. In 2012 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 335-344. IEEE, 2012.

Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. gem5-
gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters,
14(1):34-36, 2014.

Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al.
Mgpusim: enabling multi-gpu performance modeling and optimization. In Inter-
national Symposium on Computer Architecture (ISCA), pages 197-209, 2019.
Bradford M Beckmann and Anthony Gutierrez. The amd gem5 apu simulator:
Modeling heterogeneous systems in gemb. In Tutorial at the International Sympo-
stum on Microarchitecture (MICRO), 2015.

Anthony Gutierrez, Bradford M Beckmann, Alexandru Dutu, Joseph Gross,
Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Bran-
don Potter, Sooraj Puthoor, et al. Lost in abstraction: Pitfalls of analyzing gpus
at the intermediate language level. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 608-619. IEEE, 2018.
Ali Bakhoda, George L. Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In 2009 IEEE interna-
tional symposium on performance analysis of systems and software, pages 163-174.
IEEE, 2009.

Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin, Yaosheng Fu, Niladrish Chat-

terjee, Nan Jiang, and David Nellans. Need for speed: Experiences building a

190

Conclusion and Future Work

[103]

[104]

[105]

[106]

107]

[108]

[109]

trustworthy system-level gpu simulator. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 868-880. IEEE, 2021.
Karthik Ganesan and Lizy K John. Maximum multicore power (mampo) an au-
tomatic multithreaded synthetic power virus generation framework for multicore
systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-12, 2011.

Siddharth Nilakantan, Karthik Sangaiah, Ankit More, Giordano Salvadory, Baris
Taskin, and Mark Hempstead. Synchrotrace: synchronization-aware architecture-
agnostic traces for light-weight multicore simulation. In International Sympo-
stum on Performance Analysis of Systems and Software (ISPASS), pages 278-287.
IEEE, 2015.

Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and Lizy K John.
Statistical pattern based modeling of gpu memory access streams. In Proceedings
of the 54th Annual Design Automation Conference 2017, pages 1-6, 2017.
Mingyu Liang, Wenyin Fu, Louis Feng, Zhongyi Lin, Pavani Panakanti, Shengbao
Zheng, Srinivas Sridharan, and Christina Delimitrou. Mystique: Enabling accurate
and scalable generation of production ai benchmarks. In International Symposium
on Computer Architecture (ISCA), pages 1-13, 2023.

Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh
Ketkar, and Christina Delimitrou. Ditto: End-to-end application cloning for net-
worked cloud services. In International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, pages 222-236, 2023.
Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX annual
technical conference, FREENIX Track, page 41, 2005.

Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-
tav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt

Werner. Simics: A full system simulation platform. Computer, 35(2):50-58, 2002.

BIBLIOGRAPHY 191

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

A. J. KleinOsowski and D. J. Lilja. Minnespec: A new SPEC benchmark work-
load for simulation-based computer architecture research. Computer Architecture
Letters (CAL), 1(1):7-7, 2002.

Robert H. Bell and Lizy K. John. Improved automatic testcase synthesis for
performance model validation. In International Conference on Supercomputing
(SC), pages 111-120, June 2005.

David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. The NAS parallel benchmarks 2.0. Technical report, NAS-
95-020, NASA Ames Research Center, 1995.

Edward W Forgy. Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics, 21:768-769, 1965.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics,
pages 461-464, 1978.

Thomas F Wenisch, Roland E Wunderlich, Babak Falsafi, and James C Hoe. Sim-
ulation sampling with live-points. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 2-12, March 2006.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Conference
on Programming Language Design and Implementation (PLDI), pages 190-200,
June 2005.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. SPEC CPU2017:
Next-generation compute benchmark. In International Conference on Performance
Engineering (ICPE), pages 41-42, April 2018.

Ankur Limaye and Tosiron Adegbija. A workload characterization of the SPEC
CPU2017 benchmark suite. In International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 190-200, April 2018.

192

Conclusion and Future Work

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

E Barszcz, J Barton, L Dagum, P Frederickson, T Lasinski, R Schreiber,
V Venkatakrishnan, S Weeratunga, D Bailey, D Browning, et al. The NAS parallel
benchmarks. In International Journal of Supercomputer Applications, 1991.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Si-
mon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks
summary and preliminary results. In Conference on Supercomputing (SC), pages
158-165, 1991.

Haogiang Jin, Michael Frumkin, and Jerry Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance. Technical report, NAS-99-011,
NASA Ames Research Center, October 1999.

DCFG generation with PinPlay. https://software.intel.com/content/www/
us/en/develop/articles/pintool-dcfg.html.

C. Yount, H. Patil, and M. S. Islam. Graph-matching-based simulation-region se-
lection for multiple binaries. In International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 5261, March 2015.

C. Pereira, H. Patil, and B. Calder. Reproducible simulation of multi-threaded
workloads for architecture design exploration. In IEEE International Symposium
on Workload Characterization (IISWC), pages 173-182, September 2008.
OpenMP 3.1 API C/C++ Syntax Quick Reference Card. https://www.openmp.
org/wp-content/uploads/0OpenMP3. 1-CCard. pdf.

Tong Li, Alvin R Lebeck, and Daniel J Sorin. Spin detection hardware for improved
management of multithreaded systems. Transactions on Parallel and Distributed
Systems (TPDS), 17(6):508-521, 2006.

S. Van den Steen, S. Eyerman, S. De Pestel, M. Mechri, T. E. Carlson, D. Black-

Schaffer, E. Hagersten, and L. Eeckhout. Analytical processor performance and

https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html
https://software.intel.com/content/www/us/en/develop/articles/pintool-dcfg.html
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1-CCard.pdf

BIBLIOGRAPHY 193

[128]

[129]

[130]

[131]

[132]

[133]
[134]
[135]

power modeling using micro-architecture independent characteristics. Transactions
on Computers (TC), 65(12):3537-3551, 2016.

S. Van den Steen, S. De Pestel, M. Mechri, S. Eyerman, T. Carlson, D. Black-
Schaffer, E. Hagersten, and L. Eeckhout. Micro-architecture independent ana-
lytical processor performance and power modeling. In International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 32-41, March
2015.

A. A. Nair and L. K. John. Simulation points for SPEC CPU 2006. In International
Conference on Computer Design (ICCD), pages 397-403, October 2008.

Xinnian Zheng, Haris Vikalo, Shuang Song, Lizy K John, and Andreas Gerstlauer.
Sampling-based binary-level cross-platform performance estimation. In DATE,
2017.

Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster
and more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1-28, 2005.

Timothy Sherwood and Brad Calder. Time varying behavior of programs. In UC
San Diego, 1999.

Checkpoint /restore in userspace.

CRIU integration with docker.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Ro-
drigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan
Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,

Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza

194

Conclusion and Future Work

[136]

[137]

[138]

[139]

[140]

Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mick, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian Weis,
David A. Wood, Hongil Yoon, and Eder F. Zulian. The gemb simulator: Version
20.04+. arXiv preprint arXiv:2007.03152, 2020.

Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. From RTL to CUDA: A GPU acceleration flow for RTL simulation with
batch stimulus. In International Conference on Parallel Processing (ICPP), pages
1-12, 2022.

Fares Elsabbagh, Shabnam Sheikhha, Victor A Ying, Quan M Nguyen, Joel S
Emer, and Daniel Sanchez. Accelerating rtl simulation with hardware-software
co-design. In Symposium on Microarchitecture (MICRO23), 2023.

Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr
Pourghannad, Ritik Raj, and James R Larus. Manticore: Hardware-accelerated
RTL simulation with static bulk-synchronous parallelism. In International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 219-237, 2023.

Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.
DIABLO: A warehouse-scale computer network simulator using FPGAs. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 207-221, 2015.

William Lloyd Bircher and Lizy John. Predictive power management for multi-core

BIBLIOGRAPHY 195

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

processors. In International Symposium on Computer Architecture, pages 243-255.
Springer, 2010.

Andreas Diavastos and Pedro Trancoso. Switches: A lightweight runtime for
dataflow execution of tasks on many-cores. ACM Transactions on Architecture
and Code Optimization (TACO), 14(3):1-23, 2017.

Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M Gillies. Mojo: A
dynamic optimization system. In 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3), pages 81-90, 2000.

Neeraj Kulkarni, Feng Qi, and Christina Delimitrou. Pliant: Leveraging approx-
imation to improve datacenter resource efficiency. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 159-171.
IEEE, 2019.

Michael J Voss and Rudolf Eigemann. High-level adaptive program optimization
with adapt. In Proceedings of the eighth ACM SIGPLAN symposium on Principles
and practices of parallel programming, pages 93-102, 2001.

Xin You, Changxi Liu, Hailong Yang, Pengbo Wang, Zhongzhi Luan, and Depei
Qian. Vectorizing spmv by exploiting dynamic regular patterns. In Proceedings of
the 51st International Conference on Parallel Processing, pages 1-12, 2022.
Chuntao Jiang, Zhibin Yu, Hai Jin, Chengzhong Xu, Lieven Eeckhout, Wim Heir-
man, Trevor E. Carlson, and Xiaofei Liao. Pcantorsim: Accelerating parallel ar-
chitecture simulation through fractal-based sampling. ACM Trans. Archit. Code
Optim., 10(4), dec 2013.

R.L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

Ayose Falcén, Paolo Faraboschi, and Daniel Ortega. Combining simulation and
virtualization through dynamic sampling. In 2007 IEEE International Symposium
on Performance Analysis of Systems & Software, pages 72-83. IEEE, 2007.

196

Conclusion and Future Work

[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

LoopPoint source code. https://github.com/nus-comparch/looppoint.
Anastasiia Butko, Rafael Garibotti, Luciano Ost, Vianney Lapotre, Abdoulaye
Gamatie, Gilles Sassatelli, and Chris Adeniyi-Jones. A trace-driven approach for
fast and accurate simulation of manycore architectures. In The 20th Asia and
South Pacific Design Automation Conference, pages 707-712. IEEE, 2015.
Joshua L Kihm, Samuel D Strom, and Daniel A Connors. Phase-guided small-
sample simulation. In 2007 IEEFE International Symposium on Performance Anal-
ysis of Systems € Software, pages 84-93. IEEE, 2007.

Marc Casas, Harald Servat, Rosa M. Badia, and Jestus Labarta. Extracting the
optimal sampling frequency of applications spectral analysis. Concurrency and
Computation: Practice and FExperience, 24:237-259, 03 2012.

Sanjoy Dasgupta. Experiments with random projection. In Proceedings of the
Sizteenth conference on Uncertainty in artificial intelligence, pages 143-151, 2000.
Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings
of the 20th international conference on Machine Learning (ICML-03), pages 147—
153, 2003.

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

Trevor E Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. An evaluation of high-level mechanistic core models. ACM Transactions on
Architecture and Code Optimization (TACO), 11(3):1-25, 2014.

Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Ra-
hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside
6th-generation intel core: New microarchitecture code-named skylake. IEEFE Mi-
cro, 37(2):52-62, 2017.

Irma Esmer Papazian. New 3rd gen intel xeond scalable processor (codename:

Ice lake-sp). In IEEE Hot Chips Symposium (HCS), pages 1-22, 2020.

https://github.com/nus-comparch/looppoint

BIBLIOGRAPHY 197

[159)]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Dimitrios Chasapis, Marc Casas, Miquel Moreté, Raul Vidal, Eduard Ayguadé,
Jestus Labarta, and Mateo Valero. Parsecss: Evaluating the impact of task par-
allelism in the parsec benchmark suite. ACM Transactions on Architecture and
Code Optimization (TACO), 12(4):1-22, 2015.

Ali Hajiabadi, Andreas Diavastos, and Trevor E. Carlson. Noreba: A compiler-
informed non-speculative out-of-order commit processor. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 21, page 182193, New York, NY,
USA, 2021. Association for Computing Machinery.

Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. Turnpike:
Lightweight soft error resilience for in-order cores. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 21, page
654666, New York, NY, USA, 2021. Association for Computing Machinery.

Stijn Eyerman, Wim Heirman, Sam Van den Steen, and Ibrahim Hur. En-
abling branch-mispredict level parallelism by selectively flushing instructions. In
EEE/ACM International Symposium on Microarchitecture (MICRO), pages T67—
778, 2021.

M Deilmann et al. A guide to vectorization with intel c++ compilers. Intel
Corporation, pages 20-21, 2012.

Alen Sabu, Changxi Liu, and Trevor E. Carlson. Viper: Utilizing hierarchical
program structure to accelerate multi-core simulation. IEEE Access, 12:17669—
17678, 2024.

Shoaib Akram, Jennifer B Sartor, and Lieven Eeckhout. Dvfs performance predic-
tion for managed multithreaded applications. In IEEFE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 12-23. IEEE,
2016.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,

198

Conclusion and Future Work

167

[168]

[169]

[170]

[171]

[172]

[173]

[174]

and Pablo Villalobos. Compute trends across three eras of machine learning. In
International Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE,
2022.

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In International
Symposium on Computer Architecture, pages 365-376, 2011.

Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communi-
cations of the ACM, 54(5):67-77, 2011.

Tan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics
hardware. ACM transactions on graphics (TOG), 23(3):777-786, 2004.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In International
Symposium on Computer Architecture (ISCA), pages 1-12, 2017.

William S. Carter, Ic Duong, R. R. Freman, Henry Hsieh, Jason Y. Ja, John E.
Mahoney, N. T. Ngo, and S. L. Sac. A user programmable reconfigurable logic
array. In Proc. Custom Integrated Circuits Conf., pages 515521, 1986.

Victor Garcia, Juan Gomez-Luna, Thomas Grass, Alejandro Rico, Eduard
Ayguade, and Antonio J Pena. Evaluating the effect of last-level cache sharing
on integrated gpu-cpu systems with heterogeneous applications. In International
Symposium on Workload Characterization (IISWC), pages 1-10. IEEE, 2016.
Mark D Hill and Vijay Janapa Reddi. Accelerator-level parallelism. Communica-
tions of the ACM, 64(12):36-38, 2021.

Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

computer conference, pages 483-485, 1967.

BIBLIOGRAPHY 199

[175]

[176]

[177]

178]

[179]

[180]

[181]

[182]

[183]

Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B Baden, and Dean M
Tullsen. Redefining the role of the cpu in the era of cpu-gpu integration. IEEE
Micro, 32(6):4-16, 2012.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN conference
on Programming language design and implementation, page 112, New York, NY,
USA, 2000. Association for Computing Machinery.

Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and imple-
mentation of a dynamic optimization framework for windows. In 4th ACM work-
shop on feedback-directed and dynamic optimization (FDDO-4), page 20, 2001.
Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit:
A dynamic binary instrumentation framework for nvidia gpus. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 372-383, 2019.
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiw:2312.11805, 2023.

Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro,
2023.

Kai Yuan, Christoph Bauinger, Xiangyi Zhang, Pascal Baehr, Matthias Kirch-

200

Conclusion and Future Work

[184]

[185]

[186]

[187]

188

[189)]

[190]

[191]

[192]

(193]

hart, Darius Dabert, Adrien Tousnakhoff, Pierre Boudier, and Michael Paulitsch.
Fully-fused multi-layer perceptrons on intel data center gpus. arXiv preprint
arXiv:2403.17607, 2024.

XPU-Point source code. https://github.com/nus-comparch/xpupoint, 2025.
Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor, Kim
Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady Tal.
Analyzing parallel programs with pin. Computer, 43(3):34-41, 2010.

Linux. Linux programmers manual. https://man7.org/linux/man-pages/man8/
1d.so0.8.html, 2024.

Gordon E Moore et al. Progress in digital integrated electronics. In FElectron
devices meeting, volume 21, pages 11-13. Washington, DC, 1975.

Herb Sutter et al. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobbs journal, 30(3):202-210, 2005.

Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R
Das. Managing gpu concurrency in heterogeneous architectures. In IEEE/ACM
international symposium on microarchitecture, pages 114-126. IEEE, 2014.

Joel Hestness, Stephen W Keckler, and David A Wood. Gpu computing pipeline
inefficiencies and optimization opportunities in heterogeneous cpu-gpu processors.
In 2015 IEEE International Symposium on Workload Characterization, pages 87—
97. IEEE, 2015.

Nvidia gh200 grace hopper superchip architecture. https://resources.nvidia.
com/en-us-grace-cpu/nvidia-grace-hopper/, 2023.

Debendra Das Sharma. Compute express link. CXL Consortium White Paper,
2019.

Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink inter-

connect. IEEE Micro, 37(2):7-17, 2017.

https://github.com/nus-comparch/xpupoint
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper/
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper/

BIBLIOGRAPHY 201

[194]

[195]

[196]

[197]

[198]

199

[200]

[201]

DARPA. Common heterogeneous integration and ip reuse strategies (chips).
https://www.darpa.mil/program/common-heterogeneous-integration-and-

ip-reuse-strategies, 2024.

CP Wong and Michelle M Wong. Recent advances in plastic packaging of flip-
chip and multichip modules (mcm) of microelectronics. IEEE Transactions on
Components and Packaging Technologies, 22(1):21-25, 1999.

Arik Gihon. Lunar lake architecture session. In 2024 IEEE Hot Chips 36 Sympo-
stum (HCS), pages 1-49. IEEE Computer Society, 2024.

Gabriel H Loh, Michael J Schulte, Mike Ignatowski, Vignesh Adhinarayanan,
Shaizeen Aga, Derrick Aguren, Varun Agrawal, Ashwin M Aji, Johnathan Al-
sop, Paul Bauman, et al. A research retrospective on amd’s exascale computing
journey. In International Symposium on Computer Architecture (ISCA), pages 1-
14, 2023.

Alan Smith, Gabriel H Loh, Michael J Schulte, Mike Ignatowski, Samuel Naffziger,
Mike Mantor, Mark Fowler, Nathan Kalyanasundharam, Vamsi Alla, Nicholas
Malaya, Joseph L. Greathouse, Eric Chapman, and Raja Swaminathan. Realizing
the amd exascale heterogeneous processor vision. In International Symposium on
Computer Architecture (ISCA), 2024.

Boris Krasnopolsky and Alexey Medvedev. Acceleration of large scale openfoam
simulations on distributed systems with multicore cpus and gpus. In Parallel
Computing: On the Road to Ezxascale, pages 93—-102. IOS Press, 2016.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model training
on gpu clusters using megatron-lm. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2021.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla:

https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies
https://www.darpa.mil/program/common-heterogeneous-integration-and-ip-reuse-strategies

202

Conclusion and Future Work

[202]

203]

[204]

[205]

206]

[207]

208]

209]

[210]

A unified graphics and computing architecture. IEEE micro, 28(2):39-55, 2008.
David Blythe. The xe gpu architecture. In 2020 IEEE Hot Chips 32 Symposium
(HCS), pages 1-27. IEEE Computer Society, 2020.

Michael J Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901-1909, 1966.

Guei-Yuan Lueh, Kaiyu Chen, Gang Chen, Joel Fuentes, Wei-Yu Chen, Fangwen
Fu, Hong Jiang, Hongzheng Li, and Daniel Rhee. C-for-metal: High performance
simd programming on intel gpus. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 289-300. IEEE, 2021.
Kenneth L Clarkson. An algorithm for approximate closest-point queries. In
Symposium on Computational Geometry, pages 160-164, 1994.

Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction. Journal
of Machine Learning Research, 3(Mar):1307-1331, 2003.

Yuanwei Fang, Zihao Liu, Yanheng Lu, Jiawei Liu, Jiajie Li, Yi Jin, Jian Chen,
Yenkuang Chen, Hongzhong Zheng, and Yuan Xie. Nps: A framework for accurate
program sampling using graph neural network. arXiv preprint arXiv:2304.08880,
2023.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for
clustering analysis. In International conference on machine learning, pages 478—
487. PMLR, 2016.

Standard Performance Evaluation Corporation (SPEC). Specaccel® 2023 bench-
mark. https://www.spec.org/accel2023/, 2023.

Junjie Li, Alexander Bobyr, Swen Boehm, William Brantley, Holger Brunst, Aure-
lien Cavelan, Sunita Chandrasekaran, Jimmy Cheng, Florina M. Ciorba, Mathew
Colgrove, Tony Curtis, Christopher Daley, Mauricio Ferrato, Mayara Gimenes
de Souza, Nick Hagerty, Robert Henschel, Guido Juckeland, Jeffrey Kelling, Kelvin

Li, Ron Lieberman, Kevin McMahon, Egor Melnichenko, Mohamed Ayoub Neggaz,

https://www.spec.org/accel2023/

BIBLIOGRAPHY 203

[211]

[212]

[213]

[214]

[215]

[216]

[217]

Hiroshi Ono, Carl Ponder, Dave Raddatz, Severin Schueller, Robert Searles, Fe-
dor Vasilev, Veronica Melesse Vergara, Bo Wang, Bert Wesarg, Sandra Wienke,
and Miguel Zavala. Spechpc 2021 benchmark suites for modern hpc systems.
In ACM/SPEC International Conference on Performance Engineering, ICPE 22
page 1516, New York, NY, USA, 2022. Association for Computing Machinery.
Garrett M Morris, David S Goodsell, Ruth Huey, William E Hart, Scott Halliday,
Rik Belew, and Arthur J Olson. Autodock. Automated docking of flexible ligands
to receptor-User Guide, 2001.

Leonardo Solis-Vasquez, Edward Mascarenhas, and Andreas Koch. Experiences
migrating CUDA to SYCL: A molecular docking case study. In International
Workshop on OpenCL (IWOCL). ACM, 2023.

Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F
Sanner, Andreas Koch, and Stefano Forli. Accelerating autodock4 with gpus
and gradient-based local search. Journal of chemical theory and computation,
17(2):1060-1073, 2021.

Mark James Abraham, Teemu Murtola, Roland Schulz, Szilard PA&ll, Jeremy C
Smith, Berk Hess, and Erik Lindahl. Gromacs: High performance molecular simu-
lations through multi-level parallelism from laptops to supercomputers. SoftwareX,
1:19-25, 2015.

Intel extension for PyTorch sources. https://github.com/intel/intel-
extension-for-pytorch/.

Efraim Rotem, Adi Yoaz, Lihu Rappoport, Stephen J Robinson, Julius Yuli Man-
delblat, Arik Gihon, Eliezer Weissmann, Rajshree Chabukswar, Vadim Basin, Rus-
sell Fenger, et al. Intel alder lake cpu architectures. IEEE Micro, 42(3):13-19, 2022.
Irma Esmer Papazian. New 3rd gen intel® xeon® scalable processor (codename:

Ice lake-sp). In Hot Chips Symposium, pages 1-22, 2020.

https://github.com/intel/intel-extension-for-pytorch/
https://github.com/intel/intel-extension-for-pytorch/

204

Conclusion and Future Work

[218]

[219]

[220]

[221]

[222]

223]
[224]

[225]
[226]

Hong Jiang. Intel’s ponte vecchio gpu: Architecture, systems & software. In 2022
IEEE Hot Chips 34 Symposium (HCS), pages 1-29. IEEE Computer Society, 2022.
Nevine Nassif, Ashley O Munch, Carleton L. Molnar, Gerald Pasdast, Sitaraman V
Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikrishnan Venkataraman,
Sireesha Kandula, et al. Sapphire rapids: The next-generation intel xeon scalable
processor. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
volume 65, pages 44-46. IEEE, 2022.

Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,
Sreenivas Mandava, Andy Rudoff, lan M Steiner, Bob Valentine, Geetha Vedara-
man, et al. Cascade lake: Next generation intel xeon scalable processor. IEEE
Micro, 39(2):29-36, 2019.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. Nvidia al00 tensor core gpu: Performance and innovation. IEEE
Micro, 41(2):29-35, 2021.

Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat, Anirudha Ra-
hatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside
6th-generation intel core: New microarchitecture code-named skylake. IEEE Mi-
cro, 37(2):52-62, 2017.

oneAPI Specification.

Intel. Intel oneapi. https://www.intel.com/content/www/us/en/developer/
tools/oneapi/toolkits.html, 2023.

NVIDIA. NVIDIA CUDA Toolkit Documentation, 2024.

Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman,
Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel,
Wen-Mei W Hwu, et al. Spec accel: A standard application suite for measuring

hardware accelerator performance. In International Workshop on Performance

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

BIBLIOGRAPHY 205

[227]

[228]

[229]

230

[231]

232]

[233]

[234]

Modeling, Benchmarking and Simulation of High Performance Computer Systems,
pages 46-67. Springer, 2014.

Intel Software Development Emulator (Intel SDE). https://www.intel.com/
software/sde.

Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. Gromacs: A
message-passing parallel molecular dynamics implementation. Computer physics
communications, 91(1-3):43-56, 1995.

The GROMACS molecular simulation toolkit. https://github.com/gromacs/
gromacs.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems (NeurIPS), 32, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pages 4171-4186. As-
sociation for Computational Linguistics, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Vitaly Zakharenko, Tor Aamodt, and Andreas Moshovos. Characterizing the per-
formance benefits of fused cpu/gpu systems using fusionsim. In Design, Automa-
tion & Test in Furope Conference (DATE), pages 685-688. IEEE, 2013.

Richard L Graham, Galen M Shipman, Brian W Barrett, Ralph H Castain, George
Bosilca, and Andrew Lumsdaine. Open mpi: A high-performance, heterogeneous

mpi. In International Conference on Cluster Computing, pages 1-9. IEEE, 2006.

https://www.intel.com/software/sde
https://www.intel.com/software/sde
https://github.com/gromacs/gromacs
https://github.com/gromacs/gromacs

206

Conclusion and Future Work

[235]

[236]

237

[238]

239

[240]

[241]

242]

[243]

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. Starpu: a unified platform for task scheduling on heterogeneous multicore
architectures. In International Euro-Par Conference, pages 863-874. Springer,
20009.

Aaftab Munshi. The OpenCL specification. In 2009 IEEE Hot Chips 21 Sympo-
sium (HCS), pages 1-314. IEEE, 2009.

James C Beyer, Eric J Stotzer, Alistair Hart, and Bronis R de Supinski. Openmp
for accelerators. In OpenMP in the Petascale Era: 7Tth International Workshop on
OpenMP (IWOMP), pages 108-121. Springer, 2011.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with CUDA: Is CUDA the parallel programming model that appli-
cation developers have been waiting for? Queue, 6(2):40-53, 2008.

AMD ROCm. Hip: C++ heterogeneous-compute interface for portability. https:
//github.com/ROCm/HIP, 2024.

Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive perfor-
mance comparison of CUDA and OpenCL. In International Conference on Paral-
lel Processing (ICPP), pages 216-225. IEEE, 2011.

Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and
Jack Dongarra. From cuda to opencl: Towards a performance-portable solution
for multi-platform gpu programming. Parallel Computing, 38(8):391-407, 2012.
Junghyun Kim, Thanh Tuan Dao, Jaehoon Jung, Jinyoung Joo, and Jaejin Lee.
Bridging OpenCL and CUDA: a comparative analysis and translation. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1-12, 2015.

Mayank Daga, Zachary S Tschirhart, and Chip Freitag. Exploring parallel pro-
gramming models for heterogeneous computing systems. In IEEFE international

symposium on workload characterization, pages 98-107. IEEE, 2015.

https://github.com/ROCm/HIP
https://github.com/ROCm/HIP

BIBLIOGRAPHY 207

[244]

[245]

[246]
[247]

[248]

[249]

[250]

[251]

[252]
[253]

Lee Howes and Maria Rovatsou. SYCL Specification — SYCL integrates OpenCL
devices with modern C++, 2015.

Zhiming Wang, Yury Plyakhin, Chenwei Sun, Ziran Zhang, Zhiwei Jiang, Andy
Huang, and Hao Wang. A source-to-source CUDA to SYCL code migration tool:
Intel® DPC++ compatibility tool. In International Workshop on OpenCL, pages
1-2, 2022.

Intel project for LLVM technology. https://github.com/intel/11lvm.

perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/, 2012.

Andi Kleen and Beeman Strong. Intel processor trace on linux. Tracing Summit,
2015, 2015.

Trevor E. Carlson, Wim Heirman, Harish Patil, and Lieven Eeckout. Efficient,
accurate and reproducible simulation of multi-threaded workloads. In Workshop
on Reproducible Research Methodologies (REPRODUCE), February 2014.

Bjorn Gottschall, Silvio Campelo de Santana, and Magnus Jahre. Balancing accu-
racy and evaluation overhead in simulation point selection. In IFEFE International
Symposium on Workload Characterization (IISWC), pages 43-53. IEEE, 2023.
Brinkley Sprunt. The basics of performance-monitoring hardware. IEEE Micro,
22(4):64-71, 2002.

The sniper multi-core simulator. https://snipersim.org.

Vincent M. Weaver. Self-monitoring overhead of the linux perf event performance
counter interface. In International Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 102-111, 2015.

https://github.com/intel/llvm
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/
https://snipersim.org

	Acknowledgments
	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	The Context
	Challenges Involved
	Simulation of Multi-core Systems
	Simulation of Heterogeneous Systems
	Validation of Selected Sample
	Thesis structure

	Related Work
	Workloads and Analyses
	Characterizing Program Execution
	Sampling Single-threaded Workloads
	Sampling Multi-threaded Workloads
	Sampling GPU Workloads
	Analytical Modeling
	Warmup Techniques
	Simulation Infrastructures
	Synthetic Workload Generation
	Checkpointing Techniques

	LoopPoint: Checkpoint-driven Sampled Simulation for Multi-threaded Applications
	Introduction
	Fast and Generic Multi-threaded Simulation Requirements
	The LoopPoint Methodology
	Selecting a Unit of Work
	Understanding Parallelism
	Marking Region Boundaries
	Identifying Loops using DCFG
	Clustering Representative Regions
	Warmup
	Runtime Extrapolation
	Reproducible Application Execution for Accurate Analysis
	Putting it All Together
	Speed-up Potential
	Workload Applicability

	Experimental Setup
	Simulation Infrastructure
	Workloads
	Constrained Execution Infrastructure
	DCFG and Basic Blocks
	Unconstrained Replay
	Synchronization Handling

	Evaluation
	Accuracy
	Speedup

	Related Work
	Conclusion

	Viper: Utilizing Hierarchical Program Structure to Accelerate Multi-core Simulation
	Introduction
	Background and Motivation
	Program Sampling
	Checkpointing Techniques
	Microarchitectural State Warmup
	The Quest for Advanced and Efficient Sampling

	The Viper Methodology
	Exploring the Hierarchical Structure of Program Execution
	Region Profiling
	Determining the Region Similarity
	Fast and Accurate Fast-Forwarding
	The Warmup Challenge
	Generating Simulation Checkpoints
	Simulation of Representative Regions

	Experimental Setup
	Simulation Tools
	Benchmarks Used
	Analysis Tools

	Evaluation
	Comparison with State-of-the-Art
	Varying Region Sizes

	Conclusion

	Pac-Sim: Simulation of Multi-threaded Workloads using Intelligent, Live Sampling
	Introduction
	Simulating Modern Architectures
	The Pac-Sim Methodology
	Online Region Detection
	Online Region Profiling
	Determining Region Similarity
	Prediction Mechanism
	Simulation by Application Reconstruction
	Sampled Simulation in Parallel
	Microarchitectural Warmup

	Experimental Setup
	Simulation Tools
	Benchmarks Used

	Evaluation
	Comparison with the State-of-the-Art
	Case Studies

	Related Work
	Conclusion

	XPU-Point: Simulator-Agnostic Sample Selection Methodology for Heterogeneous CPU-GPU Applications
	Introduction
	XPU-Pin Framework
	Instrumentation and Analysis Tools

	The Imperative For Efficient Simulation of Heterogeneous Systems
	The Trend Towards Heterogeneity
	Limitations of Traditional Analysis Methodologies
	Effective Sampling of Heterogeneous Workloads
	Effects of Microarchitectural Warmup

	XPU-Point Sample Selection Methodology
	Workload Distribution on GPUs
	Slices of Heterogeneous Applications
	Capturing Heterogeneous Execution Profiles
	Selecting the Representative Slices
	Sample Validation and Tuning
	Estimating the Full Application Performance

	Experimental Setup
	Evaluation
	Comparison with GPU Sample Selection
	Sample Validation using Native Hardware
	Evaluation of PyTorch Inference Workloads

	Related Work
	Conclusion and Future Directions

	ROIperf: Rapid Validation and Iterative Tuning of Workload Sampling Methodologies
	Introduction
	Background
	Sample Selection Methodologies
	Sample Validation
	Hardware Performance Counters
	Instrumentation using Pin

	Methodology and Implementation Details
	ROI Selection using Sampling
	ROI Specification
	ROI Handling in ROIperf

	Experimental Setup
	Workloads Used
	Sample Selection
	Simulators Used

	Evaluation
	Testing ROIperf Applicability
	Evaluation of Single-threaded Applications
	Evaluation of Multi-threaded Applications

	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

